
One (Block) Size Fits All:
PIR and SPIR with Variable-Length Records via Multi-Block Queries

Ryan Henry, Yizhou Huang, and Ian Goldberg
Cheriton School of Computer Science

University of Waterloo
Waterloo ON, Canada N2L 3G1

{rhenry, y226huang, iang}@cs.uwaterloo.ca

Abstract

We propose a new, communication-efficient way for
users to fetch multiple blocks simultaneously in Goldberg’s
robust information-theoretic private information retrieval
(IT-PIR) scheme. Our new multi-block IT-PIR trades off
some Byzantine robustness to improve throughput without
affecting user privacy. By taking advantage of the recent
Cohn-Heninger multi-polynomial list decoding algorithm,
we show how realistic parameter choices enable the user
to retrieve several blocks without increasing the commu-
nication or computation costs beyond what is required to
retrieve a single block, and argue that the resulting scheme
still maintains essentially optimal Byzantine robustness
in practice. We also derive optimal parameters for our
construction, which yields communication costs within a
small factor of the lowest possible.

With our new multi-block IT-PIR protocol as a starting
point, we construct four new symmetric PIR (SPIR)
protocols that each support variable-length database
records. By decoupling the PIR block size from the
lengths of individual database records, we are free to
fix the block size to its communication-optimal value
without artificially restricting the contents and layout of
the records. Moreover, it is straightforward to augment
three of our four new SPIR constructions with efficient
zero-knowledge proofs about the particular records a
user is requesting in a given query; this makes it easy
to implement pricing and access control structures over
the records using standard techniques from the literature.
The resulting SPIR protocols are therefore well suited
to privacy-preserving e-commerce applications, such as
privacy-friendly sales of e-books, music, movies, or smart
phone and tablet apps.

Keywords — Private information retrieval, symmetric PIR,
oblivious transfer, usable PIR, zero-knowledge proofs,
privacy-enhancing technologies.

I. Introduction

Privacy-enhancing technologies (PETs) are technolo-
gies that aim to empower users with control over the
dissemination and use of information about themselves
and about their day-to-day activities. Modern PETs employ
sophisticated cryptographic techniques to facilitate interac-
tions that would otherwise appear impossible to conduct
in a privacy-friendly way. This approach lets PETs derive
their privacy guarantees from the security properties of
the underlying cryptographic primitives they use, which
in turn derive their security properties from basic facts
(or conjectures) about information theory or computational
complexity theory. A good deal of modern cryptography
focuses on the latter, with many cryptographic protocols
relying on assumptions about it being infeasible — rather
than impossible — for an adversary to extract some
private information by observing or participating in a
protocol run. The security proofs for these computationally
secure PETs therefore hold with respect to adversaries
that have only limited (computational and algorithmic)
resources at their disposal, but not necessarily with respect
to “all-powerful” adversaries that can solve presumed hard
problems like factoring or computing discrete logarithms.
This is in contrast to information-theoretically secure
PETs: if a PET is information-theoretically secure, then
no amount of resources (or future algorithmic advances)
can give the adversary any advantage in extracting the
user’s private information. Of course, proving that a sys-
tem can provide such strong privacy guarantees requires
some equally strong (non-computational) assumptions.
One common such assumption, which is relied upon by
secret sharing schemes [36], some cryptographic voting
protocols [13, 35], mix networks [19] and onion routing
networks [21], among others, is that no more than some
threshold number of agents are malicious and colluding
against the user to extract her secrets.
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Private Information Retrieval
Private information retrieval (PIR) is one particular

class of PET that helps users retrieve information from
a database in a way that is highly respectful of privacy. A
user’s query encodes a set of keywords [15], the indices of
certain records [16], or some simple SQL statements [33],
and the database server processes the query and responds
without learning any nontrivial information about what
data the user is after. In computationally secure PIR
(CPIR), the user employs public-key cryptography to en-
code these keywords, indices, or SQL statements in her
query in a way that enables the database server to respond
with the correct (encrypted) data, while making it computa-
tionally infeasible for the database server to learn what data
the user has requested. In information-theoretically secure
PIR (IT-PIR), the stricter privacy requirement presents
somewhat of a paradox, which precludes such a reliance
on public-key cryptography: the user’s query must not
contain any information about what particular data she
is requesting, yet the database server must nonetheless
respond in a way that lets the user extract this very data!

The trivial way to solve the PIR problem is to have
the database server respond to every query with the entire
database, and then let the user carry out her own local key-
word searches, index lookups, or SQL statement evalua-
tions. This trivial solution may be information-theoretically
secure, but it is not very interesting and it is highly
impractical for large databases since the communication
cost is linear in the length of the database. To exclude
this and related trivial solutions, the PIR literature only
considers protocols whose total communication cost is
strictly less than (and scales sublinearly with) the length
of the database. Alas, it is not obvious that sublinear
communication can actually make PIR more practical than
the trivial solution; indeed, in their oft-cited 2007 study,
Sion and Carbunar found that not one CPIR protocol
from the arsenal at their disposal could — or likely ever
will — outperform the trivial PIR protocol, given the
relative speeds of processors and networks and the trends
in how quickly they increase [37]. However, that paper
only considered CPIR protocols (and only those published
prior to 2007 — at least one later CPIR protocol [31]
has been shown to be faster than the trivial solution [34]),
which naturally raises the following question: can IT-
PIR do any better? Intuition might suggest that it surely
cannot; in fact, it is not immediately clear that IT-PIR with
sublinear communication is even possible. After all, the
database server knows precisely what sequence of bits it
receives from and sends to each user. If some database bits
are not somehow “included” in the response, then given a
sufficiently clever algorithm and sufficient computational
resources, it seems inevitable that the database server could
deduce something about which database bits the user has

requested. In their seminal paper on PIR [16], Chor et al.
showed that nontrivial IT-PIR is indeed impossible when
there is only a single database server; however, they then
went on to construct a multi-server IT-PIR protocol whose
security holds if not every database server colludes against
the user. Several other IT-PIR protocols have since been
proposed [3, 23, 25, 38], each building on Chor et al.’s idea
of sharing queries among multiple noncolluding database
servers.1 In their 2011 follow-up to Sion and Carbunar’s
paper, Olumofin and Goldberg found that a number of
multi-server IT-PIR protocols in the literature are indeed
more efficient than trivial PIR, in some cases by up to
three orders of magnitude [34].

Our contributions
Chor et al.’s foundational work on PIR modeled the

database as a string of n bits out of which the user retrieves
the ith bit while keeping the index i of that bit private.
A handful of subsequent papers have extended this basic
model by subdividing the n-bit database into some number
r of b-bit blocks, out of which the user retrieves the ith

block — rather than the ith bit — without revealing i.
This latter model more closely approximates real-world
databases than does the former, but it is still insufficient
for modeling databases with variable-length records, such
as those serving multimedia content. This work therefore
initiates the study of PIR over such variable-length records.
Our main contributions are as follows:

1) We revisit Goldberg’s robust IT-PIR protocol [25] and
extend it to support multi-block queries, wherein the
user fetches several b-bit blocks in a single query
without revealing either the number of blocks fetched
or the index of any block. Multi-block PIR queries
naturally lead to PIR queries over variable-length
records without padding or other efficiency-harming
workarounds.

2) We redo Goldberg’s optimal-block-size analysis, tak-
ing into consideration both our new multi-block que-
ries and the lengths of individual database records.
Our analysis indicates that, in practice, the expected
communication cost and Byzantine-robustness of our
protocol are both within a small factor of the lowest
possible (with near-optimal robustness relying on the
assumption that the PIR servers are rational agents).

3) We extend our new multi-block IT-PIR to construct
four new symmetric PIR protocols, each of which
supports queries over variable-length records. We
empirically evaluate the performance of two of these

1The intuitive objection to IT-PIR can be salvaged as follows. Barring
any clever precomputation scheme (and associated auxiliary storage),
the computational cost of any PIR protocol (information-theoretic or
otherwise) must be at least linear in the size of the database, since the
user cannot possibly learn anything about a database bit that the server
does not use to help compute the query response [2].



new protocols and find that they are practical for
use in certain application domains, even on modest
hardware configurations.

II. Background

A. Goldberg’s robust IT-PIR
Our construction in this paper extends Goldberg’s robust

IT-PIR [25], which is more or less a generalization of Chor
et al.’s original IT-PIR protocol. We focus on Goldberg’s
IT-PIR for three reasons: 1) IT-PIR protocols like Gold-
berg’s protocol are faster than any known CPIR protocol by
an order of magnitude or more [34], 2) the communication
cost of Goldberg’s protocol is within a small factor of
optimal if the user is interested in a relatively large block
of data [25] (see below), which is the case in, e.g., certain
database-driven e-commerce applications, and 3) while
conceptually quite simple, Goldberg’s scheme has a rich
algebraic structure that we exploit in Section III. Goldberg
models the database as an r-by-s matrix D over some
finite field F. Each row of D is a single database block;
that is, D consists of r blocks, each of which contains
some data represented by a string of s field elements.
Users query D for a block using the following basic
fact from linear algebra: if e j is the jth standard basis
vector of Fr (i.e., the length-r row vector over F with
unity in column j and zero elsewhere), then taking the
vector-matrix product e j ·D yields row j of D. Goldberg
uses Shamir’s polynomial secret sharing scheme [36] to
split e j componentwise into ` vectors of shares, which
the user submits to ` different database servers. Each
database server returns the product of its respective share
vector with D. By the linearity of Shamir secret shares,
interpolating the query responses componentwise at x = 0
still yields row j of D, even though no database server
has been given any information about the index j. This
most basic form of the protocol only supports retrieval by
index, but standard tricks allow for queries that are more
expressive (for example, keyword searches [15] and SQL
queries [33]) on top of this framework.

Robustness. Goldberg’s protocol is optimally robust with
respect to the number of malicious or Byzantine database
servers that it can tolerate. [20] Suppose the user encodes
her query using secret sharing polynomials of degree (at
most) t < `, and that k≤ ` servers respond. Given these pa-
rameters, Shamir secret sharing information-theoretically
hides the contents of the user’s query from any coalition
of at most t of the ` database servers. Goldberg [25] notes
that if t < k and v ≤ k− b

√
kt c − 1, then Guruswami-

Sudan list decoding [26] can extract the correct block
from the set of responses even when up to v servers re-
turn (possibly maliciously correlated) incorrect responses.
More recently, Devet et al. [20] showed that replacing

Guruswami-Sudan list decoding with the recent Cohn-
Heninger multi-polynomial list decoding algorithm [17]
extends robustness in Goldberg’s protocol to the theoretical
limit of up to v = k− t − 2 Byzantine database servers.
Looking ahead, our main contribution in this work is to
observe that Devet et al.’s optimally robust variant of
Goldberg’s protocol leaves sufficiently many degrees of
freedom for a single query vector to evaluate to several
standard basis vectors at different inputs. We leverage this
observation to construct multi-block queries that can dra-
matically improve the throughput of Goldberg’s scheme.
Before doing so, however, we shall first examine some
other aspects of the protocol that will be impacted by this
modification.
Communication cost. The communication-optimal block
size for Goldberg’s single-block IT-PIR occurs when r =

s =
√

N for a database comprised of N field elements
(where k≈ ` is unknown in advance to the user). For each
block that a user fetches from the database, she sends r
field elements to each of ` servers and receives s field
elements from each of k responding servers; thus, the total
communication cost per query is (`+k)

√
N field elements

when r = s, and somewhat higher otherwise. If the user is
interested in an entire block of s ≈

√
N field elements,

then this cost is within a 2` factor of the theoretical
optimum (which itself is clearly bounded below by the
s field element communication cost of a non-private query
for the same data).2 Of course, insisting that each record
has length s =

√
N and that r = s is quite restrictive in

practice; one cannot generally rely on all records in a
database being of a fixed length, nor on the number of
records being somehow related to their lengths. Using a
suboptimal choice of parameters can address part of this
problem, but it also serves to increase the communication
cost. A second possible workaround immediately comes
to mind: pack multiple records into a block (together with
some padding) to handle records that are smaller than

√
N

field elements, and require users to submit multiple queries
to retrieve records that are larger than

√
N field elements.

However, if users must submit multiple queries to retrieve
large records, then it becomes necessary for all users to
submit the maximum possible number of queries needed

2There is a large body of research on communication-efficient IT-PIR,
and quite a few protocols in the literature have asymptotically lower
communication cost than Goldberg’s protocol if the user only wishes to
retrieve a single bit (or a small number of bits) from an n-bit database.
The state of the art in this respect appears to be Yekhanin’s 3-server
IT-PIR based on locally decodable codes, which has communication
complexity nO(1/dlg pe) for any Mersenne prime p [38]. Assuming that
there are infinitely many Mersenne primes, this yields a scheme with
communication complexity nO(1/ log logn) for infinitely many n. Nonethe-
less, it is clear that no protocol — private or otherwise — can use less
than O(s) communication to fetch an s-element block. If s ≥

√
N and

we treat ` as a constant, then Goldberg’s IT-PIR achieves this optimal
asymptotic communication cost, and does so with only a reasonably small
coefficient (i.e., less than `+ k) hidden behind the “big O”.



for any record, regardless of the size of the actual record
they seek. Otherwise, the database servers could infer
some information about the records a user is requesting
by observing how many blocks she queries for. A similar
line of reasoning reveals that, as long as there exists at least
one record that is

√
N field elements long, then the above

observation regarding the near-optimality of Goldberg’s IT-
PIR holds; moreover, as we will see in Section III, using
an appropriate choice of parameters extends this near-
optimality to any database containing a record that is more
than

√
N field elements long.

B. Symmetric PIR and oblivious transfer
Symmetric PIR (SPIR) is a variant of PIR that extends

privacy protection to the database servers by insisting that
users must not learn any nontrivial information about parts
of the database that they do not explicitly request [24]. A
close relative of SPIR is 1-out-of-n oblivious transfer [8]
(1
nOT, or just OT); SPIR and OT are so similar, in fact, that

many researchers do not distinguish between them. For
the purposes of this paper, SPIR refers to protocols that
use strictly sublinear communication, while OT refers to
protocols that use (at least) linear communication. Kushile-
vitz and Ostrovsky note that it is theoretically possible to
transform any PIR protocol into SPIR using general zero-
knowledge proof techniques and some encryption [30]. We
illustrate the distinction between SPIR and OT by com-
paring two schemes that are constructed using Kushilevitz
and Ostrovsky’s suggestion; that is, we compare Henry et
al.’s multi-server SPIR protocol [28] with Camenisch et
al.’s simulatable adaptive OT protocol [12]. The former
protocol derives from Goldberg’s IT-PIR and the latter
from trivial PIR (i.e. downloading the entire database).
For brevity, we only give a high-level overview of both
protocols and refer the reader to the respective references
for further details.

Henry et al.’s SPIR. The user in Henry et al.’s scheme
forms a query exactly as in Goldberg’s IT-PIR, and then
commits to each of her secret sharing polynomials using
Kate et al.’s polynomial commitments [29], which we
briefly review in Section IV-A. (One consequence of using
polynomial commitments in this way is that the underlying
IT-PIR must be instantiated with a prime field F whose
order is large enough to satisfy certain cryptographic
assumptions. This has a small, though not insignificant,
impact on the efficiency of the underlying IT-PIR.) She
then uses (noninteractive, batch) zero-knowledge proofs to
convince each database server that the committed polyno-
mials are consistent with the set of shares in her query, and
that the committed polynomials evaluate (componentwise)
to a standard basis vector e j at x = 0, for some 1≤ j ≤ r.
Of course, a clever user could still obtain some information
about other parts of the database either by sending a differ-

ent vector of commitments to each database server, or by
choosing her vector of secret sharing polynomials nonran-
domly so that it also passes through one or more additional
standard basis vectors at different inputs x 6= 0. (We use
this latter “attack” in our multi-block query construction
in Section III and throughout Section IV.) Henry et al.
thwart both of these attacks in one fell swoop: the database
servers each seed a pseudorandom generator (PRG) with
a common secret value (for example, a digest of the entire
database) and the vector of polynomial commitments from
the user. Each database server then uses the output of this
PRG to rerandomize the user’s query before processing
it. (Intuitively, this rerandomization replaces each of the
non-free coefficients in the secret sharing polynomials that
contain the user’s response with new, uniform random ones
that are unknown to the user.) The polynomial commit-
ments and zero-knowledge proofs that Henry et al. add to
Goldberg’s IT-PIR protocol increase the communication
cost by only a small constant factor (plus a small additive
term), so their protocol preserves the sublinear asymptotic
communication cost of the underlying IT-PIR. The linear
computation of the IT-PIR dominates the computation cost,
albeit with some additional overhead owing mostly to Θ(r)
full-length exponentiations (in an elliptic curve group) for
the user, and Θ(r) short exponentiations (i.e., with ≈ 40-bit
exponents) for each database server [28, Figure 1].

Camenisch et al.’s OT. Camenisch et al. take an entirely dif-
ferent approach with their OT protocol. In an initialization
phase, the (single) database server encrypts each individual
record using a different, specially chosen cryptographic
key, and then publishes the encrypted database for any
user to download in its entirety. To retrieve a plaintext
record from the encrypted database, the user must first
download the entire encrypted database (to avoid revealing
which portion she is interested in), and then obtain the
appropriate decryption key for her desired record from the
database server. To accomplish this, Camenisch et al. clev-
erly employ a unique signature scheme3: the key needed
to decrypt the record at index j is just (perhaps some
publicly known function of) the unique signature on the
message “j ” under the database server’s public key. Hence,
to decrypt a record, the user just requests a blind signature
on that record’s index, and attaches a zero-knowledge proof
that attests to the well-formedness of the blinded message.
Privacy for the database server follows from the security
of the encryption and the (one-more-)unforgeability of the
signature scheme, while privacy for the user follows from
the (unconditional) hiding of the blind signature scheme
and the trivial download step. The zero-knowledge proofs

3A unique signature scheme is a cryptographic signature scheme with
the nonstandard property that, for any given (message, public key) pair,
there exists one and only one valid signature on the given message under
the given public key.



and blind signature that the client uses to retrieve her
decryption key increase the communication cost of the
underlying trivial PIR by a factor of two plus a small
constant; thus, the protocol preserves trivial PIR’s linear
asymptotic communication cost.

C. Pricing and access control

The Henry et al. SPIR protocol and the Camenisch et
al. OT protocol have more in common than just being
constructed from simpler PIR protocols using Kushilevitz
and Ostrovsky’s heuristic: the creators of both schemes
have augmented their respective protocols to support some
additional, nonstandard features that make them suitable
for deployment in scenarios outside of the standard SPIR
and OT use cases. In particular, both protocols support
flexible pricing [9, 28] and access control [10, 11, 28]
structures. As such, variants of either protocol would seem
to be particularly well suited to use in privacy-preserving
e-commerce applications such as privacy-friendly sales of
e-books, music, movies, or smart phone and tablet apps.
Henry et al. refer to their extended SPIR, which provides
simultaneous support for pricing and access control, as
priced SPIR (PSPIR); Camenisch et al. call their pricing-
extended OT protocol priced OT (POT), and their access-
control-extended OT protocol OT with access control
(OTAC). Unfortunately, both Henry et al.’s PSPIR proto-
col and Camenisch et al.’s POT/OTAC protocols possess
certain characteristics that make them less than ideal for
e-commerce in practice: Henry et al. require each database
block to be (padded to) a fixed length, which is unrealistic
for some types of multimedia files like movies or music,
and Camenisch et al. assume a static database that is
small enough for each user to download in its entirety.
It is (intentionally) straightforward to extend three of
our four new SPIR protocols in Section IV with either
Henry et al.’s or Camenisch et al.’s zero-knowledge proofs
(or related techniques) to implement pricing and access
control, although full details of how to do this is beyond the
scope of the present paper. Moreover, each of the resulting
schemes is free from the aforementioned shortcomings;
they all use strictly sublinear communication and do not
place unrealistic restrictions on the size of the database
or the lengths of records contained therein. Measurements
by Henry et al. indicate that using their PSPIR protocol
on a 44-gigabyte database is more than two orders of
magnitude faster than trivial download over a 9 Mbps
broadband Internet connection [28], with the performance
gap increasing as the database grows in size. Each of our
SPIR protocols is at least as efficient as their construction
is, and we therefore conclude that our protocols are among
the most practical choices in the literature for real-world-
scale privacy-preserving e-commerce applications.

III. Multi-block queries in Goldberg’s IT-PIR
In Section II-B, we described a potential attack —

previously noted by Henry et al. [28] — on symmetric
variants of Goldberg’s IT-PIR. In particular, Henry et al.
note that the user might try to cheat the database servers
by encoding several standard basis vectors into a single
query vector, thus enabling her to learn about several
database blocks with just that one query. It turns out
that, if the user encodes q > 1 basis vectors in a query
using degree (at most) t +q−1 secret sharing polynomials,
this attack is information-theoretically undetectable by any
coalition of up to t cooperating servers. The proof of
this assertion echoes the security proof for conventional
Shamir secret sharing: if a coalition of database servers
has t vectors of such shares, then for each hypothesized
set of q standard basis vectors, the coalition can construct
one and only one vector of polynomials of degree at
most t + q− 1 that passes componentwise through the t
given and q hypothesized vectors. By construction, each
candidate set of hypothesized basis vectors is equally
likely, and the coalition gains no information about the
actual set of vectors. (The generalization of Shamir secret
sharing that this attack implicitly uses is really a ramp
scheme [5], since an adversary with access to more than t
but fewer than t +q vectors of shares has some incomplete
information about the q secret basis vectors.) The key
idea of this section is to recast Henry et al.’s observation
as a feature of — rather than an attack against — the
underlying IT-PIR protocol. In particular, we show how to
construct multi-block queries to fetch several blocks for the
(communication and computation) cost of one, thus greatly
reducing the multiplicative factor that separates the cost of
Goldberg’s protocol from the theoretically optimal cost.

Suppose that D is an N-field-element database that uses
the communication-optimal block size in Goldberg’s `-
server IT-PIR with privacy threshold t. Recall that the
communication cost to fetch a single block from D is then(
`+k

)√
N field elements when k servers respond. The cost

to fetch a large record that occupies q blocks by using
q consecutive queries (as suggested in Section II-A) is
q·
(
`+k

)√
N field elements. Guruswami-Sudan list decod-

ing can provide robustness for each such query against up
to v = k−b

√
kt c−1 Byzantine database servers, while us-

ing Devet et al.’s suggested multi-polynomial list decoding
increases this to v = k−t−2. We thus observe potential for
a tradeoff between Devet et al.’s newfound robustness and
the cost of querying for q blocks at once: for fixed `, t,k,
requesting q blocks together in a single query (for any
1≤ q≤ k−t−1) using Henry et al.’s “attack” decreases the
robustness bound v from k− t−2 to k− t−q−1 servers,
but does not increase the communication cost beyond(
`+ k

)√
N field elements (provided the actual number of

Byzantine responses v′ is sufficiently small compared to



N size of database in field elements
` total number of PIR servers
t privacy threshold (max. coalition size)
k number of PIR servers that respond
v Byzantine-robustness bound
v′ actual number of Byzantine responses
q number of blocks the user is requesting

Table 1: Listing of relevant parameters from the above problem
setup. The parameters are subject to the following constraints: N
is a perfect square; k≤ ` and t < k; and v = k− t−q−1≥ 0 (which
implies that q≤ k− t−1).

v = k− t− q− 1; see below). As a point of reference for
the remainder of this section, Table 1 lists each of the
relevant parameters in the above setup.

Let us briefly examine what happens when the user
sets q so as to preserve the Guruswami-Sudan robustness
bound of up to v = k−b

√
kt c−1 Byzantine servers from

Goldberg’s original IT-PIR paper [25].4 To achieve this
bound, she simply fixes the number of blocks per query as

q =
(
k− t−2

)
−
(
k−b
√

kt c−1
)

+ 1

= b
√

kt c− t

(using secret sharing polynomials of degree at most t +

q − 1). It is clear that the level of privacy does not
change: the secret sharing still perfectly hides the query
if at most t out of the ` database servers collude. If
the number of Byzantine database servers happens to be
v′< k−b

√
k (t + q−1)c, then the communication and com-

putation costs are identical to those for a standard, single-
block query, which is a q-fold improvement in throughput
compared to issuing q consecutive queries to fetch the
same set of blocks. Otherwise, if v′ ≥ k−b

√
k (t + q−1)c,

then the user may need to issue up to m = dv′/(k− v′−b
√

kt c
)e

queries to achieve unique decoding with high probability.
This expression is (tightly) bounded above by v′ queries,
which is at most k− b

√
kt c − 1 given our choice of q.

(In general, if a query encodes q standard basis vectors
and v′ servers are Byzantine, then the user must issue up
to m≤ dv′/(k− v′− t−q)e queries to guarantee unique decoding
with high probability [20].) Fortunately, when m > 1 it
turns out that, although each of the m− 1 “follow-up”
queries must involve the same set of k database servers
that responded to the first query, the follow-up queries do
not need to be for the same set of q blocks. In particular,
if the user already plans to fetch mq or more blocks
from the database, then the follow-up queries introduce no
communication or computation overhead compared to the
case of v′ = 0 Byzantine servers [20]. (Equivalently, if the

4Preserving the Guruswami-Sudan robustness bound is a somewhat
arbitrary goal, since we argue below that even less robustness should
suffice if one accepts the premise that the PIR servers are all rational
agents.

user ultimately plans to request B blocks, then using multi-
block queries does not introduce any overhead — indeed, it
usually reduces both communication and computation cost
— provided dB/qe ≥ dv/(k− v− t−q)e.) Therefore, the worst
case overhead for our example of setting q to preserve the
Guruswami-Sudan bound occurs when m = k−b

√
kt c−1

and the user seeks to fetch exactly q = b
√

kt c− t blocks.
When this worst case occurs, multi-block queries do not
improve costs compared to issuing separate, single-block
queries; indeed, it is easy to show that m ≥ q. Nonethe-
less, when v′ ≤ q−1

q

(
k− b

√
kt c
)
, we have that m < q

and therefore that the communication and computation
cost are always strictly lower than those resulting from
q consecutive single-block queries. To make the above
example more concrete, suppose that `= k = 10 and t = 5 so
that the user sets q = (10−5−2)−(10−b

√
50c−1

)
+1 = 2

blocks per query, which results in a Byzantine-robustness
bound of v = 10− (5+2−1)−2 = 2 servers. This choice of
parameters yields a two-fold increase in throughput when
there are v′ ≤ 1 Byzantine servers, or when the user seeks
B ≥ 4 blocks; moreover, the throughput is no worse than
with single-block queries when there are v′ = 2 Byzantine
servers and the user seeks only B < 4 blocks.

It is trivial to modify the parameters from the above
example to return additional blocks per query (at a cost
of lower Byzantine robustness), or to get better Byzantine
robustness (at a cost of returning fewer blocks per query).
For example, again considering the case of ` = k = 10 and
t = 5, the user can set q = 3 blocks per query to get a
robustness bound of v = 1 servers, which always yields a
three-fold improvement in throughput compared to single-
block queries (provided the query succeeds because there
are only v′ ≤ 1 Byzantine servers). Moreover, we point out
that the user could pack an additional q′ blocks into each
query without reducing robustness by sharing her query
among q′ additional database servers. Doing so incurs an
additive increase rather than a multiplicative increase in the
communication cost of the query, and no change in per-
sever computation cost. (That is, the communication cost
increases from

(
`+k

)√
N field elements to

(
`+k+2q′

)√
N

field elements instead of q′·
(
` + k

)√
N field elements.)

However, this latter trick has the undesirable side effect
of increasing the user’s exposure to potentially malicious
database servers without increasing the privacy threshold
to compensate, so we do not explore it any further.

Our analysis so far suggests that multi-block queries
can easily improve throughput compared to single-block
queries by a factor of two or more, even for modest
parameter choices. However, it turns out that the above
analysis actually understates the expected throughput gains
from switching to multi-block queries: it categorically
overstates the need to maintain high robustness (thus,
low throughput) for most queries, and assumes that both



single-block and multi-block queries use a block size that
provides optimal communication cost only for single-block
queries. The remainder of this section discusses how one
should select parameters to get optimal throughput with
multi-block queries.

Making the case for tolerating reduced robustness. Good
robustness with respect to Byzantine database servers is an
immensely useful property for an IT-PIR protocol to pos-
sess; therefore, some remarks about why it is reasonable to
tolerate reduced robustness are in order. Suppose that the
user chooses q such that her query is robust against up to v
Byzantine database servers. In this case, if she receives at
most v incorrect responses, then not only can she recover
her q requested blocks, but she also learns which subset
of database servers provided her with Byzantine responses.
Once the user catches some database server misbehaving,
she can (and should) exclude it from her future queries.
Thus, a coalition of malicious (but rational) database
servers that wish to disrupt a user’s queries should return
incorrect responses if and only if the coalition is larger
than the robustness threshold v for the given query. We
already noted above, however, that single- and multi-block
queries are information-theoretically indistinguishable by
any coalition of up to t database servers; moreover, the
non-collusion assumption states that larger coalitions do
not exist among the database servers. Suppose that an
“average” query can tolerate at most v̄< k−t−2 Byzantine
responses, but that some nontrivial fraction of queries are
for just q = 1 blocks, and can therefore tolerate up to
v = k− t−2 Byzantine responses. In this case, no rational
coalition of malicious database servers should respond
incorrectly to a query unless it has at least k − t − 1
members that are involved in that query (in which case
the coalition will always succeed in disrupting the query,
regardless of q). Taking this line of reasoning to its
logical extreme, users could choose q (hence, v) such that
each query is just robust enough to tolerate the expected
failure rate for honest servers, and only occasionally issue
optimally robust queries to unmask members of coalitions
whose size is at most k− t−2. We leave a more detailed
game-theoretic analysis along these lines to future work.

In light of the above observations, we shall assume in
our analyses throughout the remainder of the paper that the
number of Byzantine servers v′ is low enough that m = 1;
that is, we will equate the cost of retrieving a record using
a multi-block query with the cost of issuing a single multi-
block query that requires no follow up queries. We reiterate
that even if this assumption turns out to be false in practice
(i.e., if v′ is large enough to make m > 1), then once the
user issues m ≤ v′ queries, the cost per retrieved block is
always as low as our optimistic analysis predicts.
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Figure 1: A record that spans five consecutive PIR blocks. The record
has index j; it begins at the cj th field element of block bj and ends
at the c′j th field element of block b′j = bj + 4. In the descriptor for
this record, Pj is an optional set of metadata about the record, such
as information regarding its price or access criteria, and σj is an
optional cryptographic signature on the rest of the tuple. Looking
ahead to Section IV, Protocol 4 and the zero-knowledge proofs that
extend Protocols 2 – 4 with pricing and access control use the optional
values Pj and σj.

Selecting the communication-optimal block size. Suppose
the largest record in the database D is S field elements
long. For a fixed block size of s field elements, this longest
record spans at most B = d(S−1)/se+1 blocks (cf. Figure 1).
If each IT-PIR query can retrieve up to q blocks, then
users must submit Q = dB/qe queries to retrieve a record
without leaking any information about that record to the
database servers. Suppose that all servers respond to the
user’s queries (i.e., that ` = k); the communication cost is
therefore 2` ·Q

(
dN/se+ s

)
field elements for each record

that the user retrieves, and the communication-optimal
block size s is the positive integer that minimizes this
expression. (It is clear that the computation-optimal block
size is just any block size that minimizes Q; i.e., any block
size for which Q = 1.)

Case 1 (q > 1): Clearly, we also have that Q = 1 for the
communication-optimal block size since Q

(
dN/se+s

)
≥(

dN/(sQ)e + sQ
)
, with equality holding if and only if

Q = 1. (In other words, if a block size of s yields
Q > 1, then switching the block size to s′ = sQ always
reduces both communication and computation cost.)
We therefore want the (positive integer) value of s
that minimizes the sum dN/se+ s subject to Q = 1. The
smallest positive integer value of s for which Q = 1
is s = d(S−1)/(q−1)e; hence, the communication-optimal
block size is s = max

(
d(S−1)/(q−1)e,d

√
N e
)
.

Case 2 (q = 1): Because B = d(S−1)/se+ 1 ≥ 2, it follows
that Q = dB/qe 6= 1 in general; that is, without making
some assumptions about the layout of the database,
a single query does not suffice to retrieve an arbitrary
record when q = 1. The “worst case” occurs when some
block contains a single field element from a longest
record, in which case S− 1 field elements from that
record appear in other blocks. By setting s ≥ S− 1
we can ensure that each of these other field elements
are in the same block; therefore, the communication-
optimal block size is s = max

(
S− 1,d

√
N e
)
, which

always yields Q = 2.



In both of the above cases, the communication cost
per query is Θ

(
max{S/q,

√
N }
)
. It may be possible to

reduce communication costs by using data-dependent opti-
mizations; i.e., by rearranging the records and introducing
padding as appropriate to eliminate all unnecessary block
overflows. The best possible communication cost occurs,
for example, when all records have a fixed length S≥

√
N ,

in which case setting s = dS/qe with Q = 1 suffices for any
q.
Communication-optimality of multi-block IT-PIR. Return-
ing to our database-driven e-commerce example, wherein
users seek to purchase e-books, music, movies, or smart
phone and tablet apps from a PIR database, we note that
PIR’s linear computation requirement places a practical
upper limit on the size of the database. Under reason-
able assumptions about the database records, it follows
for such applications that (S−1)/(q−1) >

√
N ; i.e., that the

actual communication cost is always Θ(S/q) in practice.
For example, suppose the largest file in an online video
store that supports up to q ≤ 3 blocks per query is a
movie occupying just 700 megabytes: the length of such
a database would have to exceed 120 petabytes before
(S−1)/(q−1) ≤

√
N , which seems far too large for the linear

computation cost of PIR to be economically feasible on
modern hardware. In real-world e-commerce scenarios, we
therefore expect the communication cost of multi-block
IT-PIR to be within a factor of (`+ k)/(q−1) of optimal. As S
increases relative to

√
N , this overhead factor approaches

k/(q−1).

IV. SPIR Constructions
This section presents four new SPIR constructions

that extend Goldberg’s IT-PIR. Each of our constructions
supports variable-length records with the (multi-block)
optimal communication cost. The first construction di-
rectly extends Goldberg’s IT-PIR protocol into SPIR using
ephemeral, record-level encryption and a key retrieval
strategy inspired by Naor and Pinkas’ oblivious polynomial
evaluation protocol [32]. The second and third protocols
replace ephemeral encryption with static encryption and
use Camenisch et al.’s OT (or POT/OTAC) and Henry et
al.’s SPIR (or PSPIR), respectively, to let users retrieve —
perhaps by purchasing — the long-term decryption keys
for the records they seek. The fourth protocol generalizes
Henry et al.’s (P)SPIR protocol to support both multi-
block and sub-block queries, thereby supporting queries for
variable-length records in a plaintext PSPIR database. Each
construction offers a different set of features and different
performance and usability characteristics, all of which is
summarized in Table 2 and Section IV-B.

A. Model
Our SPIR constructions build on the multi-block IT-

PIR from Section III; thus, the model considers a set of `

independent database servers that each hold a complete
replica of the (possibly encrypted) database. The user
queries some subset of the database servers for a single
database record (a unit of retrievable information), which
may be larger than or smaller than a PIR block (a unit of
data transfer). We use r and R to denote the number of
(fixed-length) blocks and the number of (variable-length)
records that comprise the database, respectively, and S
to denote the length of the longest record (measured in
field elements). The user is assumed to have a priori
knowledge about the layout of any relevant portions of
the database; i.e., we assume she knows the mapping
between PIR blocks and database records, including the
offsets into a block that specify where records begin and
end (see Figure 1). How the user obtains this information
is tangential to our own work; existing approaches like
private keyword search [15], SQL queries [33], or trivial
download of the entire index (which will typically be
much smaller than the actual database) all suffice for this
purpose. We assume that the block size is fixed to the
communication-optimal size, as discussed at the end of
Section III, whereas the sizes of individual records may
vary independently from the block size and are dictated
by their contents alone. In addition to the privacy and
efficiency goals stated below, a secondary goal of our
constructions is to enable the user to produce efficient
zero-knowledge proofs about the record she is requesting
in a given query. These proofs can state theorems such
as “I have paid for this record” or “the access control
list states that I should be allowed to access this partic-
ular record”, for example. Indeed, attaching such zero-
knowledge proofs to a query is straightforward in the latter
three of our four constructions. To facilitate this, record
descriptors (optionally) contain metadata about the record,
and are signed under a cryptographic signature scheme
that admits efficient zero-knowledge proofs of knowledge
of a message-signature pair under a given public key (e.g.,
BBS+ signatures [1]).

Our protocols target the standard security requirements
for SPIR:

User privacy: Queries must not leak any information
about the particular records that a user requests, in-
cluding the sizes of (i.e., the numbers of blocks that
comprise) those records. More formally, we require
that, for any honest user U requesting a record Ai ∈
{A1, . . . ,AR}, and for any coalition C of at most t
dishonest database servers, the combined view of C
upon receiving U’s query is statistically independent
of the record index i.

Data privacy: It must be infeasible for a user to learn
nontrivial information about n + 1 or more database
records using only n SPIR queries. More formally,



Protocol Computation Communication Hardness assumptions
field operations exponentiations

T
hi

s
w

or
k 1: Multi-block PIR + ephemeral encryption Θ(N + lgR) — Θ(S/q + lgR) SC, KDF

2: Multi-block PIR + OT Θ(N) Θ(1) Θ(S/q + R) SC, (R+2)-BDHE, (R+1)-SDH
3: Multi-block PIR + SPIR Θ(N + R) Θ(R) Θ(S/q + R) SC, (t+q−1)-SDH
4: Multi-block SPIR Θ(N + R) Θ(R) Θ(S/q + R) SC, KDF, (t+q−1)-SDH

Camenisch et al.’s OT [12] Θ(1) Θ(1) 2N +Θ(1) (R+2)-BDHE, (R+1)-SDH
Henry et al.’s (fixed-record length) SPIR [28] Θ(N) Θ(

√
N ) Θ(

√
N ) t-SDH

Table 2: The “Computation” and “Communication” columns list the asymptotic computation cost (in field operations and exponentiations)
and communication cost (in field elements), respectively, for each protocol considered in this paper: N is the length of the database, S is the
length of the longest database record, q is the number of blocks per query, and R is the number of records. All exponentiations have ≈ 160-bit
exponents for the user and ≈ 40-bit exponents for the database servers. With the exception of Protocol 1, each protocol uses ΘΘΘ(1) pairing
operations. For simplicity, the communication costs assume that (S−1)/(q−1)≥

√
N . The “Hardness assumptions” column lists the computational

hardness assumptions that must hold for data privacy: SC assumes a secure stream cipher, KDF assumes a secure key derivation function,
BDHE is the bilinear Diffie-Hellman exponent assumption [7, §2.3], SDH is the strong Diffie-Hellman assumption [6, §2.3]. (User privacy is
unconditional in each of the protocols.) To allow comparison with existing work, the last two rows list Camenisch et al.’s OT and Henry et
al.’s SPIR.

we require that, for any (possibly dishonest) user U
holding an arbitrary, auxiliary input α and interacting
with honest database servers DB1, . . . ,DBk, for any
set of descriptors I = {A1, . . . ,AR} mapping records
onto portions of an r-by-s matrix, for any n < R, and
for any pair (D1,D2) of r-by-s matrices that agree
on a subset I ′ = {Ai1 , . . . ,Ain} of records described
in I , the probability that U can, by issuing arbitrary
queries to DB1, . . . ,DBk for records in I ′, determine
if DB1, . . . ,DBk hold D1 or D2 is at most negligibly
greater (in some suitable security parameter) than 1/2.

In each of our protocols, the first property (user privacy)
holds information-theoretically under the same noncol-
lusion assumption that is required for user privacy in
Goldberg’s IT-PIR protocol, and the second property (data
privacy) holds computationally; that is, the user is re-
stricted to run polynomial time algorithms, but the database
servers can be computationally unbounded. We point out
the required computational assumptions in Table 2 and in
the security analyses following each construction.

Protocol 1: Multi-block PIR + ephemeral encryp-
tion

Our first SPIR construction is a straightforward variant
of Goldberg’s IT-PIR in which the database servers use a
stream cipher to encrypt each record on the fly with its own
ephemeral pseudorandom key stream. The user first queries
the (plaintext) database using a multi-block IT-PIR query
to obtain a sequence of (ephemerally encrypted) blocks
that span the desired record. Next, she uses OT to retrieve
a seed that will allow her to reconstruct the key stream
for (and thereby decrypt) only those parts of the retrieved
blocks that correspond to a single record of her choosing.
Under the assumption that the chosen stream cipher is
computationally secure, the database servers do not need to
check the validity of the user’s IT-PIR query since the user
learns nothing by requesting blocks that contain encrypted

portions of other records (since she cannot reconstruct their
respective key streams). Several aspects of this high-level
protocol warrant some explanation.

Constructing the key streams. The ephemerally encrypted
SPIR construction is instantiable with an arbitrary stream
cipher, provided each database server has some way of
computing the same per-record ephemeral key streams. We
stress that it is crucial for the key streams to be truly unique
and ephemeral; any key stream reuse can violate the data
privacy requirement of the protocol. To accomplish this,
we propose that each database server uses a shared secret
key (which changes whenever the database changes) and
some common state information (which changes after each
query) to derive the ephemeral keys. Following Henry et
al. [28], we point out that a cryptographic hash of the
entire plaintext database is a suitable shared key, although
any other cryptographically strong symmetric key would
also work in practice. It is less straightforward to share
a common, ephemeral state among the database servers
because inter-server communication is undesirable. One
simple way to securely get such a common state is to have
the user designate an arbitrary database server as the key
master for her query; the key master chooses a nonce ν

and returns (ν ,ς ) to the user, where ς is a cryptographic
signature on ν under the key master’s long-term public key.
The user transmits (ν ,ς ) to each database server as part of
her query; once a server is convinced that the signature is
valid, it uses ν as the “common state” from which to derive
the ephemeral keys for the query. The database servers can
process any query that contains a valid (ν ,ς ) pair without
checking the freshness of ν ; only the key master needs to
take care to ensure that the ν it issues do not get reused
(see below). (If desired, the database servers could use a
common private key or a group signature scheme [14] to
prevent the pair (ν ,ς ) from revealing the identity of the
key master.)



Deriving and obtaining the ephemeral keys. Let M = dlgRe
denote the number of bits in the binary representation of
each record index, and let ξ and ν denote the shared sym-
metric key and shared state that the database servers will
use to derive the set of ephemeral keys, respectively. We
adapt a technique due to Naor and Pinkas [32] to enable the
user to efficiently reproduce the ephemeral key stream for
the record she is requesting. The database servers use a key
derivation function (e.g., a keyed hash function) to derive
a set of 2M symmetric keys {κ10 ,κ11 , . . . ,κM0 ,κM1} from
ξ and ν . The key for the record at index j = ∑

M
i=1 bi 2i−1

is then K j =
⊕M

i=1 κibi
; here bi denotes the ith bit in the

binary representation of j. The user retrieves K j by issuing
a sequence of M consecutive 1

2OT queries to the key master
for the necessary κibi

, and then computes K j from the κibi

using the above formula. The key master should respond
to at most M such OT queries for kibi

corresponding to a
given nonce ν (and every database server should refuse
to respond to any OT queries for a nonce that it did not
personally choose and sign); if so, the user can reconstruct
at most one symmetric key K j — and hence can decrypt
at most one database record — per query.

Online database encryption. Encrypting each record by
the ephemeral key streams is simple. Conceptually, each
database server uses the output from the stream cipher to
form an r-by-s matrix K over F, which has the exact same
layout as the database D (that is, if record j in D begins
at column c j of block b j and ends at column c′j of block
b′j , then the key stream produced by K j also begins at
column c j of block b j and ends at column c′j of block
b′j in K). Upon receiving a query (in the form of a vector
of secret shares), the database servers each compute and
return the product of their given share vectors with D+K.
This is illustrated in Figure 2. In practice, the database
servers never need to compute K; rather, they can generate
the elements of K on the fly as they compute the afore-
mentioned product, thus using significantly less memory.
The user reconstructs the encrypted record using Lagrange
interpolation, just as in Goldberg’s original protocol, and
then uses K j to reconstruct the key stream and decrypt the
desired record.

 e j
...

e j+q−1

 ·

 D

+

 K




Figure 2: A multi-block IT-PIR query over the ephemerally en-
crypted database D. In practice, the q-by-s matrix of standard basis
vectors on the left is shared using the ramp scheme variant of
Shamir secret sharing in Section III and the key stream matrix
K is never computed in full. The user follows up her IT-PIR query
with M = dlg Re OT queries to retrieve the seed for one key stream
in K.

Informal security and cost analysis. The above protocol
information-theoretically hides the contents of the user’s
query under the same noncollusion assumptions as Gold-
berg’s IT-PIR protocol, provided the chosen OT scheme
also provides information-theoretic security for the user.
(The OT scheme by Camenisch et al. [12] described in
Section II-B, for example, provides the necessary infor-
mation-theoretic protection for the user.) If the user is
permitted to request at most M of the κibi

from (only)
the key master for a given nonce ν , then the user can
reconstruct at most one key stream (assuming the stream
cipher is secure); moreover, if the key master chooses its
nonces uniformly at random from a suitable domain, then,
with overwhelming probability (in the bit-length of the size
of that domain), a secure key derivation function will never
output the same ephemeral seed for two different records
in two different queries. Similarly, since the shared secret ξ

changes each time the contents of the database change, the
user cannot replay ν to get two or more records encrypted
under the same key stream as the database evolves. Hence,
the protocol provides computational data privacy if it is
instantiated with a secure stream cipher and a secure key
derivation function, and if the database servers do not
deviate from the protocol by reusing nonces or giving out
too many κibi

. We justify this latter assumption regarding
the correct operation of the database servers by pointing
out that a database server who is willing to reuse nonces
or permit superfluous OT queries for the κibi

could just
as easily give the user unfettered access to the plaintext
database.

Both the communication cost and the computation cost
of the protocol are dominated by the multi-block IT-
PIR query, with some small additional overhead owing
to encryption/decryption and the OT queries to fetch the
seed for the key stream. The cost of this latter step scales
with the logarithm of the number of records; thus, the
total communication cost is Θ(max{

√
N , S/q}+ lgR) field

elements and the total computation cost is Θ(N + lgR).
Unfortunately, there does not appear to be any straight-

forward way to augment this simple construction with
additional features like pricing or access control. The next
three constructions address this limitation.

Protocols 2 and 3: Multi-block PIR + (OT
∨

SPIR)
The next two protocols are very similar to one another,

and are superficially quite similar to Protocol 1: the user
retrieves part of the (encrypted) database using a multi-
block IT-PIR query, and then uses (a variant of) either OT
(in Protocol 2) or SPIR (in Protocol 3) to retrieve the ap-
propriate decryption key for the record she seeks. At a high
level, Protocol 2 is just a modified version of Camenisch
et al.’s OT protocol in which the trivial download step is
replaced by a multi-block IT-PIR query for the relevant
portions of the database. This dramatically improves the



communication cost of the protocol for large databases,
at the cost of some additional computation and IT-PIR’s
noncollusion assumption. We note that such a tradeoff
may be worthwhile in practice, since the (wall-clock) time
required to query a large database with Goldberg’s IT-PIR
can be a few orders of magnitude lower than the time
required for trivial download of that same database [34];
furthermore, since Moore’s law predicts faster growth in
parallel computation speeds than Nielsen’s law predicts for
bandwidth, this performance gap is likely to widen over
time. Protocol 3 is substantially the same as Protocol 2,
but it uses SPIR in place of OT to support a potentially
different set of optional features at the cost of some
additional computation and communication overhead.
Initializing the database. As in Protocol 1, we use a stream
cipher to encrypt each record individually with its own
key stream; however, instead of encrypting with ephemeral
keys at query time, Protocol’s 2 and 3 both use static
(long-term) encryption keys in much the same way as
Camenisch et al. do in their OT [12]. In the Camenisch
et al. construction, the database D is represented by a
length-N sequence of elements from the target group GT

of some admissible bilinear pairing e : G×G→GT; each
one of these N group elements corresponds to a single
encrypted database record. (In other words, Camenisch
et al. fix r = N and s = 1.) Encryption and decryption
are just multiplication and division, respectively, by some
“pseudorandom” group element that acts as the symmetric
key for a given record. In particular, the symmetric key
for the record at index j is just a unique signature on
the message “j ” using a blinded version of Au et al.’s
BBS+ signature scheme [1]. (In the case of POT or OTAC,
the message also contains some metadata about record
j.) To make Camenisch et al.’s approach work together
with our multi-block IT-PIR and variable-length records,
we represent the database as an r-by-s matrix over a finite
field F rather than a length-N list of elements from GT.
In the case of Protocol 2, the key stream that encrypts
record j is output by a stream cipher seeded with the
above unique signature. (Encryption and decryption are
just componentwise addition and subtraction in F with the
key stream output by this stream cipher, respectively.) To
avoid index reuse in the case of a non-static database, we
assign a globally unique identifier to each record and use
this identifier in place of the record’s index in the unique
signature. In the case of Protocol 3, we also encrypt each
record individually using a key stream output by some
stream cipher; however, the seeds in Protocol 3 do not
require any special structure (like being a signature on
a specific value) and are therefore generated pseudoran-
domly.
Retrieving the decryption keys. In Protocol 2, the user
retrieves her decryption key exactly as in Camenisch et

al.’s OT [12] protocol, or possibly one of its variants like
POT [10] or OTAC [9, 11] (with the above modification of
replacing the record index by a globally unique identifier).
Once she has obtained the seed, the user can use the
stream cipher to reconstruct the key stream that decrypts
her desired record. In Protocol 3, she similarly retrieves
the appropriate seed for the stream cipher using Henry et
al.’s SPIR [28] protocol.

Pricing and access control. Implementing pricing and
access control on top of either protocol is trivial: simply
use the built-in support for pricing and access control in
Camenisch et al.’s POT and OTAC, respectively, or Henry
et al.’s PSPIR, to restrict access to the decryption keys to
those who have paid and satisfy the conditions set forth in
the access control policy. In the case of Protocol 3, some
additional features are available. For example, Henry et
al.’s PSPIR protocol simultaneously supports both access
control lists and what they call tiered pricing. Tiered
pricing allows the database servers to partition users into
groups (or tiers) and then set different prices for each tier.
A user that queries the database proves in zero-knowledge
that she satisfies the access control policy and that she
is paying the price designated for members of her tier.
Protocol 3 can also use the PSPIR protocol’s bookkeeping
functionality to support multiple payees and Top-K repli-
cation (see Henry et al.’s paper for details [28]). Camenisch
et al. suggest that it might be possible to combine ideas
from their OTAC and POT protocols together to get tiered
pricing with access control in Protocol 2 as well [10], but it
seems infeasible to implement bookkeeping functionality
within their model.

Informal security and cost analysis. The security of Proto-
col 2 reduces to the security of Camenisch et al.’s protocol
(modulo considerations about the use of a stream cipher),
provided the noncollusion assumption for the IT-PIR holds.
If the protocol is instantiated to use either Camenisch et
al.’s POT [10] protocol or their OTAC [9] protocol to
retrieve decryption keys, then user privacy is information-
theoretic under the aforementioned non-collusion assump-
tion, and data privacy is computational under the (R+2)-
bilinear Diffie-Hellman exponent (BDHE) assumption [7,
§2.3] and the (R+1)-strong Diffie-Hellman (SDH) assump-
tion [6, §2.3]. The communication cost for the blind
signature and accompanying zero-knowledge proof is in
Θ(R), and the computation is in Θ(1); thus, the total
communication cost per query is Θ(max{

√
N , S/q} + R)

field elements and the online computation cost is Θ(N)
field operations.

Likewise, the security of Protocol 3 reduces to the
security of Henry et al.’s PSPIR (again, modulo consid-
erations about the use of a stream cipher). Hence, user
privacy is information-theoretic under the aforementioned



non-collusion assumption5, and data privacy is computa-
tional under the (t +q−1)-SDH. Note that the database
of keys is represented by an R-by-Θ(1) matrix over F
instead of the communication-optimal square matrix for
that scheme; thus, the communication cost and compu-
tation cost associated with obtaining a decryption key are
both Θ(R). The total communication cost of the protocol is
therefore Θ(max{

√
N , S/q}+R) field elements and the total

computation cost is Θ(N + R) field operations, plus Θ(R)
full-length exponentiations (in an elliptic curve group) for
the user and Θ(R) short exponentiations (i.e., with ≈ 40-bit
exponents) for each database server.

Protocol 4: Multi-block SPIR
Our fourth and final construction generalizes Henry et

al.’s PSPIR protocol [28] to handle multi-block queries,
and adds online ephemeral encryption to handle sub-block
queries (i.e, to handle queries involving blocks that contain
parts of two or more distinct records). The result is a new
PSPIR protocol that supports records of variable length in
a plaintext database. The key building block of the protocol
is Kate et al.’s polynomial commitments [29].

Constant-size commitments to polynomials. We briefly
recall Kate et al.’s PolyCommitDL polynomial commit-
ments [29], which play a central role both in Henry et
al.’s PSPIR protocol and in our generalization of it. Let
e : G×G→ GT be an admissible bilinear pairing on a
group G of the same order as the prime field F. A trusted
initializer (or a distributed protocol) outputs a long-term
public key PK = {gα i | 0 ≤ i ≤ T}, where g is a fixed
generator of G and α ∈ Z∗|F| is a secret (trapdoor) key,
then it securely discards α . A commitment to a polynomial
f (x) is then C = g f (α), which is easy to compute from PK
provided deg f ≤ T . A prover can open C to the evaluation
of f (x) at x = i by computing the polynomial quotient w(x)
obtained upon dividing f (x)− f (i) by x− i and appealing
to the polynomial remainder theorem, which states that
f (x) = w(x)(x− i) + f (i). That is, the prover computes a
witness ω = gw(α) to the evaluation of f (x) at x = i and
sends the triple (i, f (i), ω) to the verifier, who confirms
that e(C, g) = e(ω, gα/gi) ·e(g, g) f (i). If deg f = t, then C is
information-theoretically hiding against an adversary that
knows fewer than t evaluations of f (x), and computa-
tionally hiding under the discrete logarithm assumption
against an adversary that knows exactly t evaluations of
f (x) [29]. (C is trivially non-hiding against an adversary
that knows more than t evaluations of f (x), since such
an adversary can easily interpolate said evaluations to
compute f (x).) C is computationally binding under the T -
SDH assumption [29].

5Actually, user privacy is information-theoretic against coalitions of up
to t−1 database servers, and computational under the discrete logarithm
assumption against coalitions of t database servers [28].

Block types and metadata. To simplify the discussion in
this section, it is convenient to distinguish between two
fundamentally different block “types”.

Type I blocks contain parts of two or more records.
Type II blocks contain information about only one

record.
Every record is comprised of one or two Type I blocks and
zero or more Type II blocks. Referring back to Figure 1,
we see that record j in that example has two Type I blocks
(indices b j and b′j) and three Type II blocks (indices b j +1
through b j + 3).
Generalizing Henry et al.’s proof that a query is well
formed. The crux of Henry et al.’s PSPIR protocol is an
efficient zero-knowledge proof that a vector of polynomial
commitments opens componentwise to a standard basis
vector at x = 0. Given a fixed vector ~f = 〈 f1, . . . , fr〉
of polynomials from F[x] and a uniform random vector
~a = 〈a1, . . . ,ar〉 of scalars from [1,n] (n ≤ |F|), define
the polynomial F(x) = ~a · ~f . Henry et al.’s proof com-
bines the following elementary observation about F(x)
with Cramer et al.’s proofs of partial knowledge [18] and
Bellare et al.’s “small exponent” batch verification [4]: if
〈 f1(0), . . . , fr(0)〉 is a standard basis vector, then F(0) = ai
for some 1 ≤ i ≤ r; otherwise, if 〈 f1(0), . . . , fr(0)〉 is not
a standard basis vector, then the probability that F(0) = ai
for some 1≤ i≤ r is at most 1/n. To turn this observation
into a zero-knowledge proof, the prover (in our case, the
user) commits componentwise to ~f and sends the resulting
vector of commitments ~C = 〈C1, . . . ,Cr〉 to the verifier (in
our case, to each of the database servers). The verifier (or
a random oracle if we use the Fiat-Shamir heuristic [22])
responds with a vector of short scalars (~a above), and
both parties use this challenge vector to compute the
polynomial commitment gF(α) = ∏

r
i=1 Cai

i to F(x) = ~a · ~f .
Finally, the prover engages the verifier in a zero-knowledge
proof of knowledge of y such that y = F(0) and a (batch-
verified) proof of partial knowledge of equality of discrete
logarithms to prove she knows i ∈ [1,r] such that y = ai.
(See Appendix B of Henry et al.’s paper [28] for further
details.) If the verifier knows that sufficiently many other
verifiers have accepted the same proof about the same
vector of commitments, then it is trivial to extend the above
zero-knowledge proof to show that a vector of r scalars
from F corresponds to a componentwise secret sharing
of a standard basis vector in Fr. This latter step can be
proved explicitly, for example, with a threshold signature,
or implicitly, as we do below, by re-randomizing the query
responses in a uniform way across all verifiers.

The above proof can be generalized from a proof that
a vector of polynomial commitments opens to a standard
basis vector at x = 0 to a proof that a vector of polynomial
commitments opens to a q-by-r matrix from a predefined
set at x = 0, ...,q−1. (Where the componentwise opening at



x = i corresponds to row i of the matrix.) The generalized
proof essentially uses q parallel instances of the vector
proof, but it combines them together into a single batch.
Thus, the verifier sends an additional length-q column
vector ~c with uniform random components from [1,n]
along with the length-s row vector ~a after receiving ~C from
the prover. Both parties then compute the q-by-r matrix A
obtained by taking the outer product of ~c and ~a. In the
original protocol, the prover shows that the polynomial
F(x) =~a ·~f evaluates to a component of ~a at x = 0; in the
generalized protocol, she instead shows that the trace of
the matrix product of A with the transpose of the matrix
encoded in ~f is in the set of such traces corresponding to
allowable matrices. This is a natural way to generalize the
protocol, since the trace of a product of matrices is itself
a generalization of the notion of a dot product of vectors.
Full details of the generalized protocol are in Appendix A.

Handling Type I blocks in a multi-block query. The above
zero-knowledge proof is sufficient to extend Henry et al.’s
construction to a restricted form of multi-block SPIR,
in which users can request variable-length records from
a database that has only Type II blocks. (To make this
secure, the database servers still need to rerandomize the
user’s response polynomials for other inputs x ≥ q; this
can be done with a straightforward generalization of the
analogous step in Henry et al.’s protocol.) To handle Type I
blocks, we roll online ephemeral encryption into the query
rerandomization step. Unlike in Protocol 1, the database
servers do not encrypt the entire database; indeed, it is
only necessary to encrypt Type I blocks, and even then
only those particular Type I blocks that the user retrieves as
part of her query. If the Type I blocks are always encoded
in the first two rows of the query matrix (i.e., at x = 0 and
x = 1 in the response polynomials), for example, then it
suffices to encrypt the response — rather than the database
— at x = 0 and x = 1 only, irrespective of which record
the user requests. To enable this, the allowable matrix
corresponding to record j should be structured as follows.

Case I (bj 6= b′j): Assume that record j begins in block
b j and ends in block b′j 6= b j (we address the case of b j = b′j
separately below). The allowable matrix corresponding to
a query for record j has eb j in its first row and eb j

′−i+1 in
its second row (the order of the other rows can be arbitrary,
but must be agreed on by the user and all of the servers).
If b′j−b j < q−1, then the last q−b′j−b j−1 rows of the
matrix are the zero vector.

The servers need to encrypt blocks b j and b′j (which
may or may not be Type I blocks) in the query response.
To do so, they derive two common ephemeral seeds κ0 and
κ1 using a key derivation function seeded with a common
secret that changes whenever the database changes (for ex-
ample, a digest of the database) and a common ephemeral
state (for example, a digest of the commitment vector for

the present query). Note that, although the user can replay
a query with the same commitment vector, thus causing
the same set of keys to be reused, this is not a threat to
security since the user will also obtain the exact same set
of encrypted records.

Next, the servers iteratively apply a (publicly comput-
able) one-way function h (for example, a cryptographic
hash function) to κ0 and to κ1 to produce two length-s key
streams. The first key stream is ~K0 = 〈h(1)(κ0), . . . , h(s)(κ0)〉
and the second key stream is ~K1 = 〈h(s)(κ1), . . . , h(1)(κ1)〉,
where h(1)(x) = h(x) and h(i+1)(x) = h(h(i)(x))) for 1 < i≤ s.
(Note that the latter key stream has its order reversed.)
Let T be the upper bound on the degree of a polynomial
that can be committed to using the public parameters of
the polynomial commitment scheme. The servers use a
commonly seeded PRG to produce a length-s vector of
degree-T polynomials that passes componentwise through
~K0 at x = 0, through ~K1 at x = 1, through the zero vector
at each of x = 2, . . . ,q− 1, and through uniform random
vectors at x = q, . . . ,T −1.

Finally, each server evaluates this common polynomial
vector componentwise at its own respective server index
and adds the resultant vector of scalars to its query
response. This encrypts the (potentially Type I) blocks
encoded at x = 0 and x = 1, and randomizes the query
response at x≥ q.

Note that, given h(c j)(κ0), it is easy to compute the
trailing s− c j + 1 components of ~K0, but infeasible to
compute any of the leading c j−1 components (and similar
reasoning holds for the leading components of ~K1). Thus,
if the user learns h(c j)(κ0) and h(s−c′j+1)(κ1), then she can
decrypt only the parts of the Type I blocks encoded at x = 0
and x = 1 in her query response. The user therefore requests
these two values using Camenisch et al.’s [12] OT protocol,
and attaches a zero-knowledge proof of knowledge of a
signature (σ j) on “ j, (b j,c j), (b′j,c

′
j) [, Pj]” such that this

message is consistent with the above PIR and OT queries.
Case II (bj = b′j): The above technique fails when

b j = b′j and c′j < s (that is, when the entire record fits
within a single block but does not fill it through to the
sth field element), since in this case the user can also
decrypt part of record j + 1. To solve this, the database
servers (always) append a third length-s key stream ~K2 to
the end of the database (as an extra, ephemeral (r + 1)th

record generated from the same common inputs as ~K0 and
~K1). The allowable matrix corresponding to a query for
record j then has eb j + er+1 in its first row and er+1 in
its second row (and the zero vector in rows 3, . . . ,q− 1).
It is straightforward to verify that, given h(c j)(κ0) and
h(s−c′j+1)(κ1) as above, the user can still decrypt only the
portion of row b j that corresponds to record j. Note that
the database servers cannot distinguish between Case I and
Case II queries.



Pricing and access control. Adding support for pricing and
access control within this framework is trivial, since the
user already proves knowledge of a signature on a message
that contains both the index of the record she is requesting
and the metadata about this record. It is straightforward to
adapt Henry et al.’s bookkeeping protocols to work with
Protocol 4, although ambiguity may emerge among records
that do not contain any Type II blocks. We leave a more
thorough investigation of how one might eliminate this
ambiguity to future work.

Informal security and cost analysis. User privacy in the
above multi-block SPIR protocol is information-theoretic
against coalitions of up to t−1 database servers and com-
putational against coalitions of up to t database servers.
If the one-way function and the key derivation function
are both computationally secure, then data privacy follows
from data privacy in Camenisch et al.’s OT protocol and
the soundness of the zero-knowledge proof of query well-
formedness, which holds with overwhelming probability
under the (t +q−1)-SDH assumption. The total commu-
nication cost of the protocol is Θ(max{S/q,

√
N }+ R) and

the computation cost is Θ(N) field operations, plus Θ(R)
full-length exponentiations (in an elliptic curve group) for
the user and Θ(R) short exponentiations (i.e., with ≈ 40-bit
exponents) for each database server.

B. Discussion
We have constructed four new SPIR protocols that

build on our multi-block variant of Goldberg’s IT-PIR to
allow SPIR queries over variable-length database records.
Each protocol offers its own tradeoffs; this section briefly
discusses these tradeoffs and discusses the relative merits
of each protocol for different use cases.

Protocol 1 is the simplest extension of multi-block IT-
PIR to SPIR in that it does not require any zero-knowledge
proofs, and introduces only a slight modification to the un-
derlying IT-PIR protocol. Unfortunately, the construction
does not provide a straightforward way to integrate more
sophisticated functionality like pricing and access control.
Henry et al. have argued that the privacy-preserving e-
commerce applications made possible by priced SPIR (in
particular, their multiple-payee PSPIR [28]) may give rise
to compelling arguments for the non-collusion assumption
inherent in IT-PIR-based protocols; unfortunately, without
a way to implement pricing, their argument does not
apply to Protocol 1. Noticing certain parallels between
our Protocol 1 and Camenisch et al.’s OT protocol —
which does lend itself to integrating pricing or access
control — we devised Protocol 2, which is essentially just
Camenisch et al.’s protocol with the trivial download step
replaced by a multi-block IT-PIR query. This latter change
replaces the initial Θ(N) download step in Camenisch et
al.’s protocol with a much smaller query-time download,

which improves efficiency when the user only requires
a relatively small subset of the database, or when the
database contents are not static. In fact, Protocol 2 turns
out to be more efficient than Protocol 1 because the en-
cryption is static; the database servers need not coordinate
efforts nor perform any online cryptographic operations.
Protocol 2 is therefore the most efficient of our SPIR
protocols with respect to computation cost. Protocol 3 is
almost identical to Protocol 2, except it uses Henry et
al.’s SPIR in place to Camenisch et al.’s OT; as such,
Protocol 3 inherits the latter protocol’s rich feature set,
which includes simultaneous support for (tiered) pricing
and access control lists, and novel bookkeeping features
like Top-K replication and multiple payees (see Henry
et al.’s [28] paper for further details on these features).
This extra functionality comes at a cost of some extra
communication and computation for the user to retrieve
her decryption keys; the cost of this step scales with the
number of records in the database. Whereas Protocols 2
and 3 combine multi-block IT-PIR with Camenisch et al.’s
statically encrypted database approach, Protocol 4 adapts
the ephemeral encryption strategy from our Protocol 1
to extend Henry et al.’s SPIR protocol to a variant that
supports multi-block queries and variable-length records.

Protecting the privacy of content providers. Henry et
al. introduced multiple-payee PSPIR to enable several,
independent content providers to host each other’s data
in a common PSPIR database. In their model, the da-
tabase servers periodically perform a secure multiparty
computation to determine the portion of sales revenues
to which each content provider is entitled. Under such a
model, it seems reasonable to expect that content providers
might want to keep their data private from one another in
addition to from the users. Beimel and Stahl introduced the
notion of τ-independence to address such situations [3]: a
database is τ-independent if it is infeasible for coalitions of
up to τ database servers to deduce nontrivial information
about records that they did not themselves contribute to
the database. (Of course, by temporarily taking on the
role of user, the coalition can query the database for
other content providers’ records; τ-independence simply
ensures that the coalition can only obtain their peers’
records through the same “approved” channels as regular
users.) It is easy to configure Goldberg’s IT-PIR — and
by extension, our multi-block variant thereof — with τ-
independence. (See Goldberg’s paper [25] for details on
this feature, and how τ interacts with the other system
parameters.) Henry et al. incorrectly state that their SPIR
protocol is incompatible with this feature [28], but it is
fortunately easy to verify that this is not the case. There is
no difficulty in using the τ-independence from Goldberg’s
IT-PIR in any of our protocols, although in the case of
Protocol 2 it turns out not to be particularly helpful to
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Figure 3: A histogram (left) and table (right) illustrating the total (wall-clock) computation time required to query a 16-gigabyte subset of the
Librivox Free Audio Book Collection (https://librivox.org/) using multi-block IT-PIR, Protocol 2 (PIR+OT) and Protocol 3 (PIR+SPIR).
The IT-PIR was instantiated with a word size of w = 8 bits, a block size of s = 15.69 megabytes, ` = 5 servers, and a privacy threshold of
t = 2 servers (so that user privacy is holds if a majority of database servers are honest); in each query, the user fetched q = 3 blocks. The block
size was chosen to accommodate the largest record in our sample of the Librivox dataset, which was 31.4 megabytes. We performed 100 trials
of each experiment; the table reports the mean ± the standard deviation across all trials. The total communication cost is under 79 megabytes
for each protocol (dominated by each server sending a 15.69 megabyte block to the client) — a factor of approximately 2.5 higher than a
non-private query for the largest audio book in the database.

protect the encrypted records with τ-independence since
the protocol permits arbitrary IT-PIR queries over the
encrypted database. On one hand, if each database server
has all of the decryption keys, then the τ-independence
does not prevent them from retrieving arbitrary records
through unverified IT-PIR queries. On the other hand, if
not every database server has a copy of the decryption
keys, then the user must query the content provider with
an OT query, which reveals much information about the
particular record she seeks. In the case of Protocol 3,
one can implement τ-independence over the database of
decryption keys rather than over the encrypted records,
and in Protocol 4 simply enabling τ-independence on the
unencrypted database suffices. Therefore, in cases where
several competing content providers wish to host their data
in common database, the ability to enable τ-independence
in Protocols 3 and 4 justifies their slightly higher cost.

C. Performance evaluation
Henry et al. argue that their PSPIR construction may

be efficient enough for practical deployment in certain e-
commerce applications [28]. Our new constructions offer
substantial performance improvements over their protocol
for databases serving multimedia content, which suggests
that our own protocols might also be practical for de-
ployment in such application domains. To verify that
this is indeed the case, we have developed a fork of
Percy++, an open-source implementation of Goldberg’s
IT-PIR protocol, in which we implement our multi-block
query construction. We also implemented Camenisch et
al.’s OT and leveraged the built-in support for Henry et
al.’s SPIR in the latest release of Percy++ to implement
Protocol 2 and Protocol 3, respectively. We used each
of these three protocols to query for records in a 16-
gigabyte sample of the Librivox Free Audio Book Col-

lection (https://librivox.org/); Figure 3 presents a
summary of our findings. In our experiments, the client and
all servers ran on a single host with dual Intel Xeon E5420
CPUs (2.5 GHz) and sufficient RAM to hold the entire
database in memory; therefore, the figures presented in
Figure 3 are for computation only, and do not include
I/O time. All times are wall-clock times and those listed
for the servers were measured on a per-server basis. The
most expensive steps (server PIR and client overhead in
Protocol 3) are highly parallelizable, but our experiments
were all single-threaded.

V. Conclusion
We revisited an observation first made by Henry et al.

in the context of their multi-server SPIR protocol; i.e., that
the user in Goldberg’s IT-PIR protocol can retrieve several
blocks with a single query by replacing Shamir secret
sharing with its ramp scheme variant. We pointed out how
to take advantage of this observation to implement multi-
block queries that trade off some Byzantine robustness
for improved throughput without affecting privacy. Our
multi-block IT-PIR queries are information-theoretically
indistinguishable from standard, single-block queries when
the number of colluding database servers does not exceed
the privacy threshold. By taking advantage of the recent
Cohn-Heninger multi-polynomial list decoding algorithm,
we demonstrated that the user can retrieve several blocks
with the same communication and computation cost as
a single-block query and studied the impact of multi-
block queries on Byzantine robustness. We found that our
new approach can significantly reduce the constant factor
separating the communication cost of Goldberg’s original
protocol from optimal when the database hosts realistically
sized records.

https://librivox.org/
https://librivox.org/


With our new multi-block IT-PIR protocol as a starting
point, we constructed four new SPIR protocols that each
support variable-length database records. By decoupling
the PIR block size from the lengths of individual database
records, our new protocols can use the communication-
optimal block size without artificially restricting the con-
tents and layout of the records. Moreover, we pointed
out how straightforward extensions to three of our four
new SPIR constructions make it possible to construct ef-
ficient zero-knowledge proofs about the particular records
a user is requesting in a given query; this makes it easy
to implement pricing and access control structures over
the records using standard techniques from the literature.
The resulting SPIR protocols are therefore well suited
to privacy-preserving e-commerce applications, such as
privacy-friendly sales of e-books, music, movies, or smart
phone and tablet apps.
Acknowledgements.. We thank the anonymous reviewers
for their thoughtful and constructive comments. Funding
for this research was provided in part by NSERC, Mprime
NCE (formerly MITACS) and the Ontario Research Fund.
The first author is supported by an NSERC Vanier Canada
Graduate Scholarship and a Cheriton Graduate Scholar-
ship.

References
[1] M. H. Au, W. Susilo, and Y. Mu, “Constant-Size Dynamic k-TAA,”

in Proceedings of SCN 2006, ser. LNCS, vol. 4116, Maiori, Italy,
Sept 2006, pp. 111–125.

[2] A. Beimel, Y. Ishai, and T. Malkin, “Reducing the Servers’ Com-
putation in Private Information Retrieval: PIR with Preprocessing,”
Journal of Cryptology, vol. 17, no. 2, pp. 125–151, Mar 2004.

[3] A. Beimel and Y. Stahl, “Robust Information-Theoretic Private
Information Retrieval,” Journal of Cryptology, vol. 20, no. 3, pp.
295–321, Jul 2007.

[4] M. Bellare, J. A. Garay, and T. Rabin, “Fast Batch Verification for
Modular Exponentiation and Digital Signatures,” in Proceedings
of EUROCRYPT 1998, ser. LNCS, vol. 1403, Espoo, Finland, Jun
1998, pp. 236–250.

[5] G. R. Blakley and C. Meadows, “Security of Ramp Schemes,” in
Proceedings of CRYPTO 1984, ser. LNCS, vol. 196, Santa Barbara,
California, Aug 1984, pp. 242–268.

[6] D. Boneh and X. Boyen, “Short Signatures Without Random
Oracles,” in Proceedings of EUROCRYPT 2004, ser. LNCS, vol.
3027, Interlaken, Switzerland, May 2004, pp. 56–73.

[7] D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical Identity Based
Encryption with Constant Size Ciphertext,” in Proceedings of EU-
ROCRYPT 2005, ser. LNCS, vol. 3494, Aarhus, Denmark, May
2005, pp. 440–456.

[8] G. Brassard, C. Crépeau, and J.-M. Robert, “All-or-Nothing Dis-
closure of Secrets,” in Proceedings of CRYPTO 1986, ser. LNCS,
vol. 263, Santa Barbara, California, Aug 1986.

[9] J. Camenisch, M. Dubovitskaya, and G. Neven, “Oblivious Transfer
with Access Control,” in Proceedings of ACM CCS 2009, Chicago,
Illinois, Nov 2009, pp. 131–140.

[10] ——, “Unlinkable Priced Oblivious Transfer with Rechargeable
Wallets,” in Proceedings of FC 2010, ser. LNCS, vol. 6052, Tener-
ife, Canary Islands, Jan 2010, pp. 66–81.

[11] J. Camenisch, M. Dubovitskaya, G. Neven, and G. M. Zaverucha,
“Oblivious Transfer with Hidden Access Control Policies,” in
Proceedings of PKC 2011, ser. LNCS, vol. 6571, Taormina, Italy,
Mar 2011, pp. 192–209.

[12] J. Camenisch, G. Neven, and abhi shelat, “Simulatable Adaptive
Oblivious Transfer,” in Proceedings of EUROCRYPT 2007, ser.
LNCS, vol. 4515, Barcelona, Spain, May 2007, pp. 573–590.

[13] D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L.
Rivest, P. Y. A. Ryan, E. Shen, A. T. Sherman, and P. L. Vora,
“Scantegrity II: End-to-End Verifiability by Voters of Optical Scan

Elections Through Confirmation Codes,” IEEE Transactions on
Information Forensics and Security, vol. 4, no. 4, pp. 611–627, Dec
2009.

[14] D. Chaum and E. van Heyst, “Group Signatures,” in Proceedings of
EUROCRYPT 1991, ser. LNCS, vol. 547, Brighton, UK, Apr 1991,
pp. 257–265.

[15] B. Chor, N. Gilboa, and M. Naor, “Private Information Retrieval by
Keywords,” Technion, Israel, Technical report TR CS0917, 1997.

[16] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private
Information Retrieval,” Journal of the ACM, vol. 45, no. 6, pp.
965–981, Nov 1998.

[17] H. Cohn and N. Heninger, “Approximate Common Divisors via
Lattices,” in Proceedings of the 10th Algorithmic Number Theory
Symposium — ANTS X, July 2012.

[18] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of Partial
Knowledge and Simplified Design of Witness Hiding Protocols,” in
Proceedings of CRYPTO 1994, ser. LNCS, vol. 839, Santa Barbara,
California, Aug 1994, pp. 174–187.

[19] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design
of a Type III Anonymous Remailer Protocol,” in Proceedings of
IEEE S&P 2003, Oakland, California, May 2003, pp. 2–15.

[20] C. Devet, I. Goldberg, and N. Heninger, “Optimally Robust Private
Information Retrieval,” in Proceedings of USENIX Security 2012,
Bellevue, Washington, Aug 2012.

[21] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The
Second-Generation Onion Router,” in Proceedings of USENIX
Security 2004, San Diego, California, Aug 2004, pp. 303–320.

[22] A. Fiat and A. Shamir, “How to Prove Yourself: Practical Solu-
tions to Identification and Signature Problems,” in Proceedings of
CRYPTO 1986, ser. LNCS, vol. 263, Santa Barbara, California, Aug
1986, pp. 186–194.

[23] Y. Gertner, S. Goldwasser, and T. Malkin, “A Random Server Model
for Private Information Retrieval or How to Achieve Information
Theoretic PIR Avoiding Database Replication,” in Proceedings of
RANDOM 1998, Barcelona, Spain, Oct 1998, pp. 200–217.

[24] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, “Protecting Data
Privacy in Private Information Retrieval Schemes,” in Proceedings
of STOC 1998, Dallas, Texas, May 1998, pp. 151–160.

[25] I. Goldberg, “Improving the Robustness of Private Information
Retrieval,” in Proceedings of IEEE S&P 2007, Oakland, California,
May 2007, pp. 131–148.

[26] V. Guruswami and M. Sudan, “Improved Decoding of Reed-
Solomon and Algebraic-Geometry Codes,” IEEE Transactions on
Information Theory, vol. 45, no. 6, pp. 1757–1767, Sept 1999.

[27] R. Henry and I. Goldberg, “Batch Proofs of Partial Knowledge,”
University of Waterloo, Technical report CACR 2012-04, 2012.

[28] R. Henry, F. Olumofin, and I. Goldberg, “Practical PIR for Elec-
tronic Commerce,” in ACM CCS 2011, Chicago, Illinois, Oct 2011,
pp. 677–690.

[29] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-Size Com-
mitments to Polynomials and Their Applications,” in Proceedings
of ASIACRYPT 2010, ser. LNCS, vol. 6477, Singapore, Dec 2010,
pp. 177–194.

[30] E. Kushilevitz and R. Ostrovsky, “Replication is Not Needed:
Single Database Computationally-Private Information Retrieval,” in
Proceedings of FOCS 1997, Miami Beach, Florida, Oct 1997, pp.
364–373.

[31] C. A. Melchor and P. Gaborit, “A Lattice-Based Computationally-
Efficient Private Information Retrieval Protocol,” in Proceedings of
WEWORC 2007, Bochum, Germany, Jul 2007.

[32] M. Naor and B. Pinkas, “Oblivious Transfer and Polynomial Evalu-
ation,” in Proceedings of STOC 1999, Atlanta, Georgia, May 1999,
pp. 245–254.

[33] F. G. Olumofin and I. Goldberg, “Privacy-Preserving Queries over
Relational Databases,” in Privacy Enhancing Technologies, ser.
LNCS, vol. 6205, Berlin, Germany, Jul 2010, pp. 75–92.

[34] ——, “Revisiting the Computational Practicality of Private Informa-
tion Retrieval,” in Proceedings of FC 2011, ser. LNCS, vol. 7035,
Gros Islet, St. Lucia, Feb 2011, pp. 158–172.

[35] P. Y. A. Ryan and S. A. Schneider, “Prêt à Voter with Re-encryption
Mixes,” in Proceedings of ESORICS 2006, ser. LNCS, vol. 4189,
Hamburg, Germany, Sept 2006, pp. 313–326.

[36] A. Shamir, “How to Share a Secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, Nov 1979.

[37] R. Sion and B. Carbunar, “On the Practicality of Private Information
Retrieval,” in Proceedings of NDSS 2007, San Diego, California,
Mar 2007.

[38] S. Yekhanin, “New Locally Decodable Codes and Private Informa-
tion Retrieval Schemes,” Electronic Colloquium on Computational
Complexity (ECCC), vol. 13, no. 127, Oct 2006.



Appendix: ZKP from Protocol 4
Let ~f = 〈 f1, . . . , fr〉 be a vector of degree (at most) T =

t +q polynomials in F[x], let PK be public parameters for
degree-T polynomial commitments, let ~C = 〈C1, . . . ,Cr〉 be
a componentwise vector of polynomial commitments to the
components of ~f , and let A⊆ Fq×r be a set of “allowable”
q-by-r matrices over F; in the SPIR setting, each matrix in
A will describe the layout of one of the records the user
may retrieve. The tuple (t,q,~C,A,PK) is common input to
both the prover (P) and the verifier (V), but only P knows
~f . The following protocol allows P to convince V that

M =

 f1(1) · · · fr(1)
...

. . .
...

f1(q) · · · fr(q)

 ∈ A; (1)

i.e., that there exists an allowable matrix A such that, for
all i ∈ [1, . . . ,q], ~f evaluates componentwise to the ith row
of A on input x = i.

V: Choose ~a ∈R

[
0,n−1

]1×r and send it to P.
P: Choose γ ∈R Z∗|F| and a generator h ∈R F, then compute

the polynomial F(x) = γ
(
~f ·~a

)
. Compute h′ = hγ and

the (polynomial commitment) witnesses ω1, . . . ,ωq to
the evaluations of F(x) at x = 1, . . . ,q, and send the
tuple (h,h′,ω1, . . . ,ωq) to V.

V: Choose ~c ∈R

[
0,n−1

]q×1 and send it to P.
P and V: Compute the q-by-r challenge matrix B =~c⊗~a,

then construct the set of scalars B = {Tr(BAT) |A∈A}.
P: Compute and send the commitment C ′ = g∑

q
j=1 c j F(α) to

V.
V: Compute C =

(
∏

r
i=1 Cai

i

)
∑

q
j=1 c j , Ω = ∏

q
j=1 ω

c j
j , J =

∏
q
j=1 ω

j c j
j , and Y = e(C ′ · J, g)/e(Ω, gα ).

P and V: Compute gT = e(g, g) and engage in the follow-
ing zero-knowledge proof of knowledge to show that
loggT

Y ∈ γ B:

PK
{(

γ
)

: C ′ = C γ ∧h′ = hγ ∧
(∨

B∈B loggT
Y = γ B

)}
.

This latter proof can be efficiently implemented using
Henry and Goldberg’s batch proofs of partial knowl-
edge [27].

Lemma 1: Fix a list~v0,~v1, . . . ,~vm of distinct vectors in Fr.
Then for ~a ∈R

[
0,n− 1

]r, Pr
[
∃i ∈ [1,m], ~a ·~v0 =~a ·~vi

]
≤

m/n, where the probability is taken over the random choices
of ~a.

Proof: Consider the list of distinct nonzero vectors
~v′1, . . . ,~v

′
m obtained by setting ~v′i = ~vi −~v0 for i ∈ [1,m].

We will show that Pr
[
~a ·~v′i = 0 |~a ∈R

[
0,n−1

]r]≤ 1/n; the
statement to be proved then follows from the union bound.

Let vi j denote the jth component of ~v′i. Fix an in-
dex j′ ∈ [1,m] such that vi j′ 6= 0 and define the sum
Vi j′ = ∑ j∈[1,m]− j′ a j vi j. Now, ~a ·~v′i = 0 is equivalent to
a j′ vi j′ = −Vi j′ ; hence, a j′ = −Vi j′/vi j′ . Note that the right-

hand side of this equation is independent from a j′ ; hence,
because each of the possible values for a j′ occurs with
equal probability, this happens with probability at most
1/n.

Corollary 2: Fix a matrix M ∈ Fq×r and set of matrices
A⊆ Fq×r. For randomly chosen vectors ~a ∈R

[
0,n−1

]1×r

and ~c ∈R

[
0,n−1

]q×1, define the matrix B =~c⊗~a ∈ Fq×r

and the set of traces B = {Tr(BAT) | A ∈ A}. Then

Pr
[
Tr(BMT) ∈ B |M ∈ A

]
= 1, and (2)

Pr
[
Tr(BMT) ∈ B |M 6∈ A

]
≤ 2|A|/n, (3)

where both probabilities are over the random choices of ~a
and ~c.

Proof: Equation (2) is immediate from the definition of B.
To prove Equation (3), observe that for any A ∈ A∪{M}
we can rewrite Tr(B ·AT) = Tr(~c ·~a ·AT) = Tr(~a ·AT ·~c) =
~a · (AT ·~c), which is a dot product of two length-r vectors.
We use Lemma 1 to prove

Pr
[
∃A ∈ A, MT ·~c = AT ·~c

]
≤ |A|/n (4)

for ~c ∈R

[
0,n−1

]q×1; the result then follows from another
application of Lemma 1.

Consider a fixed matrix A ∈ A and index j such that
the jth columns of A and M differ in at least one row. It
then follows from Lemma 1 that the jth components of the
vectors AT ·~c and MT ·~c are different with probability at
least 1/n. Equation (4) then follows from the union bound.

Theorem 3: The above protocol is a zero-knowledge
proof that Equation (1) holds; i.e., the protocol is com-
plete, sound (with overwhelming probability in lgn), and
simulatable.

Proof: To prove completeness, suppose Equation (1) holds
so that γ Tr(BMT) = ∑

q
j=1 c j F( j) ∈ γB. If ω1, . . . ,ωq are

correct witnesses for evaluations of F(x) at x = 1, . . . ,q,
then it is straightforward to verify that e

(
(∏r

i=1 Cai
i )γ , g

)
=

e(ω j, gα/g j)e(g, g)F( j) for j ∈ [1,q]. Thus, since e(C ′, g) =

∏
q
j=1 e

(
(∏r

i=1 Cai
i )γ , g

)c j and

∏
q
j=1

(
e(ω j, gα/g j) · e(g, g)F( j))c j

= ∏
q
j=1

(
e(ω j, gα )/e(ω j, g j)

)c j · e(g, g)∑
q
j=1 c j F( j)

= ∏
q
j=1

(
e(ω j, gα )/e(ω j

j , g)
)c j · e(g, g)γ Tr(BMT)

=
(
e(Ω, gα )/e(J, g)

)
· e(g, g)γ Tr(BMT),

it follows that gγ Tr(BMT)
T = e(C ′ · J, g)/e(Ω, gα ); hence,

completeness follows from the completeness of the ZKP
in the final step.

Soundness follows from Corollary 2 and the soundness
of the zero-knowledge proof of knowledge in the final step.



Given a simulator S for the ZKPoK in the final step,
constructing a simulator S ′ for the entire protocol is trivial;
i.e., S ′ chooses C ′,h′,ω1, . . . ,ωq at random, then invokes
S on these (and the common) inputs.


	Introduction
	Background
	Goldberg's robust IT-PIR
	Symmetric PIR and oblivious transfer
	Pricing and access control

	Multi-block queries in Goldberg's IT-PIR
	SPIR Constructions
	Model
	Discussion
	Performance evaluation

	Conclusion
	References
	Appendix: ZKP from Protocol 4

