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ABSTRACT

The results of recent experiments have suggested that code stylom-
etry can successfully identify the author of short programs from
among hundreds of candidates with up to 98% precision. This poten-
tial ability to discern the programmer of a code sample from a large
group of possible authors could have concerning consequences for
the open-source community at large, particularly those contrib-
utors that may wish to remain anonymous. Recent international
events have suggested the developers of certain anti-censorship
and anti-surveillance tools are being targeted by their governments
and forced to delete their repositories or face prosecution.

In light of this threat to the freedom and privacy of individual
programmers around the world, we devised a tool, Style Counsel, to
aid programmers in obfuscating their inherent style and imitating
another, overt, author’s style in order to protect their anonymity
from this forensic technique. Our system utilizes the implicit rules
encoded in the decision points of a random forest ensemble in order
to derive a set of recommendations to present to the user detailing
how to achieve this obfuscation and mimicry attack.
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1 INTRODUCTION

Code stylometry [3] attempts to identify the programmer that wrote
some sample of computer code through an analysis of their pro-
gramming style. It achieves this by examining their source code or
executable artifacts in order to discover common features that to-
gether may reveal a “fingerprint” of the author’s style, such as their
preference for certain logical structures, comments, naming conven-
tions, etc. Following the Internet/Morris Worm incident in 1988 [13],
a report was published that attempted to profile the author of the

*More details on this work can be found in the extended version of this paper [11], as
well as in the first author’s Master’s thesis [10]. We thank NSERC for grants STPGP-
463324 and RGPIN-03858. This work was conducted while the first author was at the
University of Waterloo. This work benefitted from the use of the CrySP RIPPLE Facility
at the University of Waterloo.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WEPES ’18, October 15, 2018, Toronto, ON, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5989-4/18/10...$15.00
https://doi.org/10.1145/3267323.3268951

Ian Goldberg
University of Waterloo
iang@cs.uwaterloo.ca

worm based on an examination of the reverse-engineered code [17],
casting style analysis as a forensic technique.

This technique, however, may be used to chill speech for soft-
ware developers. There are several cases of developers being treated
as individuals of suspicion, intimidated by authorities and/or co-
erced into removing their software from the Internet. In the US,
Nadim Kobeissi, the Canadian creator of Cryptocat (an online se-
cure messaging application) was stopped, searched, and questioned
by Department of Homeland Security officials on four separate oc-
casions in 2012 about Cryptocat and the algorithms it employs [16].
In November 2014, Chinese developer Xu Dong was arrested, pri-
marily for political tweets, but also because he allegedly “committed
crimes of developing software to help Chinese Internet users scale
the Great Fire Wall of China” [4] in relation to proxy software he
wrote. In August 2015, the Electronic Frontier Foundation (EFF)
reported that Phus Lu, the developer of a popular proxy service
hosted on Google’s App Engine, called GoAgent, had been forced
to remove all their code from GitHub and delete all their tweets
on Twitter [12]. This followed a similar incident reported on great-
fire.org a few days earlier involving the creator of ShadowSocks,
another popular proxy used in China to “scale the wall”, known
pseudonymously as clowwindy. According to the article reporting
this incident, clowwindy posted a note afterwards that was subse-
quently removed, which said: “the police contacted him and asked
him to stop working on the tool and to remove all of the code from
GitHub” [14]. The README file for the project now simply says
“Removed according to regulations”. Earlier in March 2015, GitHub
was subjected to “the largest DDoS that they have ever dealt with” [2],
which has been linked to the Chinese government [8] and has been
suggested was an attempt to bully the site into removing reposito-
ries that contravened Chinese censorship regulations.

As the environment turns hostile towards the developers, many
of them may opt to disguise their identities, and authorship attri-
bution techniques such as code stylometry could be deployed in
order to identify them from other code they may have published
using their real identities. Even the threat of such techniques could
be enough to instill a chilling effect in open-source contributors
who otherwise may have been willing to contribute their time and
effort into assisting with censorship resistance tools and privacy
enhancing technologies.

Despite a substantial body of prior work on program authorship
attribution, only Simko et al. [15] (independent and concurrent
work to ours) has yet investigated how robust the techniques are to
adversarial modifications aimed at defending against code stylome-
try by obfuscation of style or imitation of someone else’s style, and
how difficult or realistic this is. They carried out two significant
user studies looking into the robustness of a state-of-the-art source
code stylometry system [3] to human adversaries attempting to
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perform targeted mimicry attacks and non-targeted obfuscation of
style. The first user study had 28 participants who were asked to
modify someone else’s code with the express intent of imitating a
third person’s style. The second study, involving 21 participants
(none of whom had taken part in the first study), examined their
ability to attribute forged samples to their true author, initially with-
out knowledge of forgery and then again after being informed of
the potential forgeries. In both studies, data from the Google Code
Jam competition! were used as the corpus, taken from the dataset
used by Caliskan-Islam et al. [3]. Their paper offers insights into the
vulnerabilities of even state-of-the-art classifiers, and highlights the
problems that can arise by only evaluating classification systems
(of any sort, not merely authorship attribution systems) in terms of
their accuracy under ordinary conditions, assuming honest actors.

We go beyond prior work by establishing a method for automated
extraction of adversarial modifications, and creating a developer
tool named Style Counsel? that assists programmers in obscuring
their coding style by mimicking someone else’s, much in the vein
of Anonymouth [9] by McDonald et al. for disguising one’s natural-
language writing style.

1.1 Contributions

While there are some papers [1, 6, 9] investigating natural language
stylometry from an adversarial perspective, and one [15] about
the source code equivalent, we look at automating the process of
making suggestions for altering source code to imitate the style of
another author. If code stylometry is truly feasible en masse against
real-world data, it represents a threat to the safety of individuals
online and therefore defences ought to be developed to assist pro-
grammers in protecting their identities against such a threat. To
this end, this work offers the following contributions; for more
details, see the extended version of this paper [11]:

(1) A new set of features for capturing elements of programming
style.

(2) A novel, practical, algorithm for extracting a change set from a
random forest classifier in order to produce a misclassification
of a particular feature vector as an alternative, known class.

(3) A tool to assist developers in protecting their anonymity that
integrates with a popular IDE and is able to perform feature
extraction on their source code and recommend changes to
both obfuscate their style and imitate the style of another,
specific individual.

(4) A pilot user study evaluating the usability of the tool, the
feasibility of manually imitating another’s style, and the prac-
ticalities of using the tool for this task.

2 STYLE COUNSEL
2.1 Data Collection and Feature Extraction

One of the aims of our work was to perform a realistic authorship
attribution study, to discover, highlight and hopefully overcome
some of the practical challenges associated with carrying out a

!https://code.google.com/codejam/
2 The Style Council is also the name of a new wave pop band formed by Paul Weller in
1983 shortly after The Jam had split.

study such as this “in the wild”. All prior studies into source code at-
tribution have used corpora derived from student assignments, text-
books and programming competitions—but none of these sources
presents a corpus such as one would encounter in a real attempt
at performing large-scale deanonymization. Student assignments
are often relatively short, all trying to achieve the same end result,
and written by individuals from very similar backgrounds (par-
ticularly with regards to their education). Code from textbooks is
likely to be proofread and edited, over-commented and, from the au-
thor’s perspective, a model of perfection. Code from programming
competitions is likely to contain much copy-and-pasted boilerplate
code, taken from their other submissions, as well as being short,
uncommented and probably not following the competitor’s usual
style—its purpose is to solve the problem as quickly as possible; it
is not intended to be production quality, readable, or maintainable.

To this end, we chose to obtain a large corpus of source code from
real projects that had been published on GitHub, with the caveat
that the code belong to a single author (and truly written by that
person), to ensure purity of style. Selecting a popular and public
source for our data ensures a wide diversity of both developers, in
terms of their background and demographic, and projects, in terms
of purpose and size. Our evaluations were carried out on 1,261 C
repositories from 525 authors; see the extended version [11] for
details of the data set collection and cleaning process.

Our target platform is the Eclipse IDE, so we wanted to inte-
grate the task of feature extraction within the plugin as much as
possible to take advantage of the rich services provided by the
IDE for code parsing. The Eclipse C Development Tools provide
a convenient mechanism for traversing the abstract syntax tree
(AST) it constructs internally, with an abstract class containing
callback methods one can implement and pass as an argument to
the AST interface. Our feature set is constructed largely from this
tree traversal, while specialized feature extractors are used to parse
comments and preprocessor directives, which are not present in
the AST.

We extracted features in the following categories; see the ex-
tended version [11, App. A] for details: node frequencies—the
relative frequency of AST node type unigrams in the AST; node
attributes—the relative frequency of AST node attributes, which
are dependent on the node type and provide more contextual in-
formation; identifiers—naming conventions, average length, etc.;
comments—use of comments, average length, ratio of comments
to other structures, etc.

These categories combined to give us a total of 265 features. We
purposefully exclude typographical features, such as indentation
and whitespace, as these inflate the accuracy of a classifier at the
cost of susceptibility to trivial attacks. Furthermore, as Simko et
al. [15] alluded to, asking users to make many minor typographical
modifications is tedious and frustrating, while there would be little
research novelty in automating such changes within our tool as
code formatters are already very common and would make our
adversarial attacks less compelling. Instead, we invoke Eclipse’s
built-in code formatter in order to provide default protection for our
users against the weakest attribution systems, without considering
such modifications as being successful defences. We also decided
against counting node bigrams as used by Caliskan-Islam et al. [3],
or character n-grams, as implemented by Frantzeskou et al. [5].
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Node bigram-based features result in extremely high-dimensional
feature vectors, while character n-grams would be completely im-
practical for producing recommendations to the user, being made
up of combinations of partial words, tokens and whitespace.

As this is exploratory work whose main purpose is to investigate
defences against attribution, rather than performing attribution
itself, this comprehensive but not exhaustive set of features was
chosen to be representative of the features one might employ if
wishing to perform authorship attribution while simultaneously
being of a high enough level to be the source of meaningful advice
to present to the user. Our aim is to demonstrate the feasibility of
an approach to parse the model generated by a learning algorithm
to automatically produce change sets for misclassification. Because
of the generality of this goal, we have provided a flexible frame-
work that can accommodate varying feature sets; exploring such
alternative feature sets to discover those that succinctly capture
an author’s style, while being amenable to producing actionable
advice, would be an excellent avenue for future work.

2.2 Making Recommendations

A significant part of our system, and crucial to its effectiveness, is
the ability to make recommendations to the user on what aspects
of their code they should change in order to disguise their identity
as a particular target author. Our reasons for imitating a specific
individual, rather than just “any” author, or “no” author (obfusca-
tion) are as follows: first, with obfuscation the aim is to reduce the
classification confidence to some target value, preferably to that
of a random guess or below that of some other author. This typi-
cally would involve perturbing the feature vector to a position just
outside the boundaries of that class in the feature space. A second
classifier trained on the same data, or with alternative background
data, may derive a different boundary that places the perturbed
feature vector within the bounds of its original class. Furthermore,
there is the problem of selecting which features to perturb, and by
how much. Imitation of “any” author suffers from many of the same
drawbacks. Granted, the direction and magnitude of perturbations
is now more clearly defined (toward the nearest other author in the
feature space), but if it is known that the feature vector has been
perturbed, the original author could be determined by finding what
classes are nearest to the feature vector’s position other than the
given class. Indeed, following Kerckhoffs’ Principle [7], we must as-
sume everything is known about our defences, and design a system
that is secure despite this knowledge.
We have the following requirements for our system:

(1) The advice should relate to something that is possible for
the programmer to change, so not refer to something that
is inherent to the programming language itself, or violate
syntactical rules of the language.

(2) The recommendations should not contradict one another, so
not advising the user to increase one feature while simultane-
ously decreasing another that is strongly positively correlated.

(3) The user should be presented only with changes that con-
tribute to the desired misclassification—either reducing con-
fidence in their classification or increasing it in the target
author.

(4) There should be a minimum of effort on the part of the user;
they should be presented with the minimum set of changes
required to effect a misclassification as the target.

(5) The recommendations should make sense to the user; they
should be able to understand what is required.

(6) Similarly, the advice should not be too vague; there should
be a clear connection between the recommendation and the
content of each file.

(7) As our tool is aimed at open-source developers, we want them
to be able to implement the changes without having a large
negative impact on readability of the code.

Of these requirements, the first two are the most important and
possibly easiest to ensure. The first equates to correctness and is
mostly a requirement of feature selection, extraction and represen-
tation. The second requirement equates to consistency and refers
to our ability to analyze the dataset and the relationships between
features.

The third requirement equates to relevance and can be met by
only considering features that are actually used by the learning algo-
rithm. With random forests, a form of feature selection occurs dur-
ing induction, due to the algorithm selecting the best feature/value
split at each node from among a random subset of the total features.
Therefore, the more important and influential features will be seen
with greater probability in each tree. This gives us the ability to
“rank” recommendations according to their influence on the overall
(mis)classification. By only making recommendations to the user
that will actually affect their classification, we can maximize the
effectiveness of the plugin, and reduce the impact on the original
code. The fourth requirement equates to efficiency and can be met
by calculating some form of effort requirement to transform the
user’s feature vector according to the recommendations, which we
can then use to select the set of recommendations requiring the
least effort.

The fifth requirement equates to simplicity of communication,
and can be met by using language that is familiar to programmers,
but without introducing too much jargon. The sixth requirement
equates to clarity and is mostly related to the features used. Features
based on vague patterns found in the file contents that are not tied
to discrete semantic objects, such as character n-grams rather than
words, are going to be hard to relate to real content.

The final requirement equates to non-intrusiveness, and is the
most difficult of the requirements to meet. It is dependent, to a large
extent, on the person implementing the change, and how exactly
they choose to do it. However, it is also dependent on the feature
set and the interpretation of the classification model. As mentioned
above, vague recommendations are hard to relate to real content
and can result in highly intrusive changes that affect readability and
other desirable aspects of the code, possibly even to the detriment
of performance and correctness.

For space reasons, we leave the details of our algorithm and
implementation to the extended version [11].

2.3 Results

We evaluated our recommendation algorithm to demonstrate that it
produces correct recommendations, in terms of eliciting a misclas-
sification as a target author. We also wish to show that features not
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Figure 1: Results of evaluating variation A and B feature vec-
tors generated from recommendations. The fabricated fea-
ture vectors were evaluated by the random forest that pro-
duced them and an alternate random forest trained on the
same data, using forests of 100 trees. The confidences re-
ported here indicate how successfully the extracted inter-
vals model the volume of feature space occupied by the train-
ing instance, with higher confidences being more successful.

included in the recommendations do not contribute to the overall
classification for that target, and can safely be ignored.

We carried out this evaluation by generating recommendations
for each file in our corpus, as though the author of that file were the
target. The values of each recommendation were used to perturb
that file’s existing feature vector. Two versions of these modified
vectors were then produced, according to how the features with
no recommendations were treated. In variation A, those features
were left as their original values, and in variation B they were set
to 0. If the variation A and B feature vectors return similar confi-
dence labels, then we can say the recommendations only included
the features that actually contribute to the classification. This is
a desirable characteristic for our system as we want to minimize
the changes we ask users to make. We then evaluated these feature
vectors with both the random forest they were derived from and a
second random forest trained on the same data (representing the
fact that the defender aiming to hide her identity will not have
access to the exact trained classifier being used by the stylometric
analyst). The results of these evaluations are given in Figure 1. The
confidence returned for the original training instances are averaged
across both random forests, as the differences are negligible, while
the confidence for the variation A and B feature vectors are aver-
aged separately over the respective forests, as their differences are
more significant. We report the confidences, rather than accuracy,
because this more accurately reflects the closeness with which we
are able to imitate the target, but note that with the relatively large
number of classes in our corpus, any class receiving a confidence
(i.e., votes) greater than 2% will typically become the overall label
attached to that instance; a class receiving a confidence greater
than 50% is guaranteed to become the overall class label. There-
fore, the accuracy in our context is always strictly greater than the
confidence.

Comparing the performance of the variation A and B vectors,
we can see there is very little difference, which demonstrates that
the subset of features used in deriving the recommendations for
the user are the only features contributing to the classification. The
differences in confidence between the training instance and the
modified feature vectors on the original random forest are a result
of the relaxing of the feature vector values from the original single

point to a volume of the feature space encompassing a much greater
number of potential feature vectors, each of which can expect to
elicit a similar classification confidence from the random forest in
question as its peers. Having a target volume to guide users toward
instead of a single point in the feature space is far more flexible,
providing our users with more options when it comes to deciding
how to implement the suggestions offered by the tool, improving
its usability at a cost of slightly lower overall confidence.

2.4 Pilot User Study

In order to help assess the usability and feasibility of our plugin, we
conducted a small pilot user study in order to receive feedback from
real users—extremely valuable for developing an effective tool. Our
Office of Research Ethics approved our study (reference number
ORE#22378).

For our pilot study, we chose participants that had C program-
ming experience and a corpus of source code files they had authored.
Three members of the CrySP (Cryptography, Security, and Privacy)
lab at the University of Waterloo who satisfied these criteria volun-
teered for the study. Each participant was given two tasks; the first
was to manually analyze another author’s source code with the aim
of identifying elements of their style and reproducing those ele-
ments in one of the participant’s own files. The second task was to
use our plugin to achieve the same goal, with a different author so
as not to confer an advantage from carrying out the first task. The
tasks were chosen in this order so that completion of the assisted
task would not provide the user with insights into the feature set
for the unassisted task. Feedback from participants indicated the
automated analysis and frequent feedback on progress were the
most important benefits, saving a great deal of time. The downsides
given pertained to clarity and degradation of code quality. See the
extended version [11] for more details and results from the pilot
study.

3 CONCLUSIONS

Source code stylometry has been identified as a potential threat to
the privacy of software developers, particularly those working in
the open-source community. In addition, several recent cases have
highlighted a worrying trend of governments targeting the devel-
opers of tools deemed to be used primarily for bypassing Internet
censorship and surveillance. It is easy to see how these two separate
phenomena could combine to threaten the safety and anonymity
of current contributors, as well as push would-be contributors into
silence. Alternatively, using authorship attribution has also been
proposed as a means of identifying computer criminals and mal-
ware developers. Before we can reach any meaningful conclusions
about its applications, however, it is important to understand its
limitations with more research into its feasibility in real-world set-
tings, its robustness in adversarial settings, and its ability to discern
style from content.

To this end, we developed an algorithm for providing source
code modification recommendations that will result in a successful
imitation if followed, using a “human-in-the-loop” model, where
it is down to the user’s discretion whether and how to implement
said recommendations. We presented our solution as a plugin called
Style Counsel for the popular open-source IDE Eclipse.
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