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Abstract—There are several analytical results on distributed
hash tables (DHTs) that can tolerate Byzantine faults. Unfor-
tunately, in such systems, operations such as data retrieval
and message sending incur significant communication costs. For
example, a simple scheme used in many Byzantine fault-tolerant
DHT constructions of n nodes requires O(log3

n) messages; this
is likely impractical for real-world applications. The previous best
known message complexity is O(log2

n) in expectation; however,
the corresponding protocol suffers from prohibitive costs owing
to hidden constants in the asymptotic notation and setup costs.

In this paper, we focus on reducing the communication costs
against a computationally bounded adversary. We employ thresh-
old cryptography and distributed key generation to define two
protocols both of which are more efficient than existing solutions.
In comparison, our first protocol is deterministic with O(log2

n)
message complexity and our second protocol is randomized with
expected O(log n) message complexity. Further, both the hidden
constants and setup costs for our protocols are small and no
trusted third party is required. Finally, we present results from
microbenchmarks conducted over PlanetLab showing that our
protocols are practical for deployment under significant levels of
churn and adversarial behaviour.

I. INTRODUCTION

The peer-to-peer (P2P) paradigm is a popular approach

to providing large-scale decentralized services. However, the

lack of admission control in many such systems makes them

vulnerable to malicious interference [1], [2]. This is a practical

concern since large-scale P2P systems are in existence today

such as the Azureus DHT [3] and the KAD DHT [4], each of

which see more than one million users per day. In addition

to file sharing, there are proposals for using P2P systems

to protect archived data [5] and re-implement the Domain

Name System [6]; such applications would likely benefit from

increased security.

There are a number of results on P2P systems that can

provably tolerate Byzantine faults [7]–[14]. This includes the

Sybil attack [15] although for ease of exposition, we refer to

a Byzantine adversary throughout this work; our results can

also be used in conjunction with some proposals specific to the

Sybil attack (see the survey of [16]). To date, the majority of

results pertain to distributed hash tables (DHTs). A common

technique in DHTs that tolerate adversarial faults is the use

of quorums which are sets of peers such that a minority of

the members suffer adversarial faults. A quorum replaces an

individual peer as the atomic unit. Adversarial behavior can

be overcome by majority action allowing for communication

between correct peers; we call this robust communication.

Since critical operations such as data queries are performed

in concert by members of a quorum, robust communication

must be efficient.

Several protocols using quorums have been proposed; how-

ever, there is a common theme in the way such quorums are

utilized. A message m originating from a peer p traverses a

sequence of quorums Q1, Q2, . . . , Qℓ until a destination peer

is reached. A typical example is a query for content where the

destination is a peer q holding a data item. Initially p notifies

its own quorum Q1 that it wishes to transmit m. Each peer in

Q1 forwards m to all peers in Q2. A peer in Q2 determines the

correct message by majority filtering on all incoming messages

and, in turn, sends to all peers in the next quorum. This

forwarding process continues until the quorum Qℓ holding

p is reached. Assuming a majority of correct peers in each

quorum, transmission of m is guaranteed. Unfortunately, this

simple protocol is costly. If all quorums have size s and the

path length is ℓ, then the message complexity is ℓ·s2. Typically,

s = Θ(log n) and, as in Chord [17], ℓ = O(log n) which gives

a O(log3 n) message complexity which is likely prohibitively

expensive for practical values of n.
Saia and Young [10] give a randomized protocol which

provably achieves O(log2 n) messages in expectation. While

communication between two quorums incurs an expected

constant number of messages, the analysis in [10] yields

a prohibitively large constant. Furthermore, with probability

1− o(1) some peers will incur ω(1) message complexity (see

our extended version [18]). The protocol also employs a link

architecture between peers requiring the use of a Byzantine

agreement protocol. Finally, maintenance and asynchronicity

issues remain unresolved.

Therefore, while results exist on the feasibility of robust

communication, work on the practicalities has lagged behind.

This dearth presents an impediment to the deployment of such

systems and we seek to address this outstanding problem.

A. Our Contributions

We improve over all previously known results involving

communication between quorums [7], [10]–[12]. We summa-

rize our main results below:

Theorem 1. In the computational setting, for an adversary

that controls up to an ǫ < 1/3-fraction of any quorum



of size at most s, there are two protocols for achieving

robust communication of a message m to a set of peers

D ⊆ Qi for some quorum Qi over a path of length ℓ. Our
Robust Communication Protocol I (RCP-I) has the following

properties:

• The total message complexity (number of messages sent

and received) and the message complexity of the sending

peer is each at most 2 · s + 4 · s · (ℓ− 2) + |D|.
• The message complexity of every non-sending peer along

the lookup path is at most 4.
• The latency (number of roundtrip communication rounds)

is at most 2 · (ℓ − 2) + 2.

For our Robust Communication Protocol II (RCP-II):

• The expected total message complexity and the expected

message complexity of the sending peer is each at most

2 · s + (ℓ−2)
(1−ǫ)·c + (ℓ− 2) + |D|.

• The expected message complexity of a non-sending peer

on the lookup path is at most 2
(1−ǫ)·c·s .

• The expected latency is at most
(ℓ−2)

(1−ǫ)·c + 2.

Here, the constant c > 0 is the probability that the response

time of a correct peer is at most ∆.

Using the Chord-based construction of [11], the message

complexity of RCP-I is O(log2 n) and for RCP-II it is

O(log n) in expectation. We tolerate a large fraction of ad-

versarial peers; strictly less than a 1/3-fraction compared to

the roughly 1/4-fraction in [10]. Our use of a distributed key

generation (DKG) scheme allows for security without a trusted

party or costly updating of public/private keys outside of each

quorum. This obviates the need for a trusted third party. To

the best of our knowledge, this is the first use of DKG in a

Byzantine-tolerant P2P setting.

Finally, we provide microbenchmark results involving two

quorums using PlanetLab. Our experimentation demonstrates

that our protocols perform well under significant levels of

churn and faulty behaviour. In particular, for a 105-node

system with ℓ = 20, our results imply RCP-I and RCP-II

complete in under 4 seconds and 5 seconds, respectively.

II. RELATED WORK

A large body of literature exists on implementing Byzantine

protocols. While P2P systems do not align perfectly with the

state machine replication (SMR) paradigm [19], the large body

of literature on Byzantine fault-tolerant replication is relevant

to our work. Early work by Reiter [20] yielded protocols for

Byzantine agreement and atomic broadcast. Our first protocol

shares some common features with the multicast protocol

of [20], yet we differ significantly since in the P2P domain

we must contend with issues of scalability, churn, and spurious

requests aimed at consuming resources. More recently, Castro

and Liskov [21] demonstrated efficient Byzantine fault-tolerant

SMR; however, this seems unsuitable for a P2P setting due to

scaling issues. Several other Byzantine fault-tolerant systems

have been implemented such as SINTRA [22], FARSITE [23],

the Query/Update protocol [24] and the HQ system [25];

however, scalability issues make the use of these protocols

in a P2P setting unlikely.

Two implemented large-scale Byzantine fault tolerant stor-

age architectures are OceanStore [26] and Rosebud [27]. The

latter scales up to tens of thousands of nodes and handles

changing membership. However, with only a single Byzantine

node per replication group, Rosebud incurs significant over-

head. In contrast, our protocols perform efficiently with 10%
of the peers being Byzantine. Rosebud relies on a configu-

ration service (CS) which tracks system membership, ejects

faulty nodes, and handles new nodes. The CS, implemented

over a set of nodes, introduces a potential bottleneck and a

possible point of attack; similarly, a “primary tier” of replicas

is used in OceanStore. In contrast, our protocol is completely

decentralized and no special set of nodes is required.

Both Rodrigues, Kouznetsov and Bhattacharjee [28] and

Rodrigues, Liskov and Shrira [29] give proposals for applying

the SMR approach on a large scale; the latter describes a

P2P system. However, both works rely on a CS and neither

provides empirical results or discusses the details of secure

data retrieval and message passing. Wang et al. [30] design

and implement a routing scheme that tolerates Byzantine faults

and yields good performance. However, they require both a

certificate authority (CA) and a special set of nodes, called a

neighborhood authority, similar to a CS.

There are several theoretical results on Byzantine fault-

tolerant DHTs [7], [11]–[13]. These results make use of

quorums, which are sets of Θ(logn) peers such that a ma-

jority of the peers in a quorum are correct. Awerbuch and

Scheideler show how to maintain quorums [7]–[9]. Saia and

Young [10] demonstrate more efficient robust communication

but, as discussed earlier, several issues remain unresolved.

Castro et al. [31], Halo [32], and Salsa [33] handle Byzan-

tine faults by routing along multiple diverse routes. The

proposal in [31] requires a CA whereas we do not rely on

any trusted third party. In both [32] and [33], the guarantees

are unclear against an adversary who owns a large IP-address

space or targets identifiers over time as described in [7]. In

contrast, defenses for quorum-based protocols are known [7]–

[9]. Finally, the ShadowWalker system [34] routes securely

using the notion of multiple “shadows” which are similar to a

quorum; however, our protocols differ significantly.

III. SYSTEM MODEL

Each peer p is assumed to have a unique identifier, pID, and
a network address, paddr. Byzantine peers are also referred to

as faulty or adversarial; all other peers are called correct. A

fraction of the correct peers may crash due to a system failure

or leave gracefully. We model such peers as having crashed.

We adopt an asynchronous communication model with

unbounded message delivery time. However, for liveness in

DKG and in our second protocol, we use a weak synchrony

assumption by Castro and Liskov [35].

Peers p and q are said to communicate directly if each has

the other in its routing table. The target of m is a set of peers

D within a single quorum; m may be a data item request and
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Fig. 1. (Left) Three peers on a DHT ring where p links to u and v. (Right)
An example of a quorum topology in a DHT ring where p ∈ Qi, u ∈ Qj

and v ∈ Qh. Thick lines signify inter-quorum links.

D may consist of a single peer or multiple peers depending

on how data is stored.

A. The Quorum Topology

There are several different approaches to how quorums are

created and maintained [7], [10], [12]; we refer the reader

to [11] for a detailed explanation. Despite these different

approaches, we may view the setup of quorums as a graph

where nodes correspond to quorums and edges correspond to

communication capability between quorums; we refer to this

as the quorum topology. Figure 1 illustrates how quorums can

be linked in a DHT such as Chord. Peers will likely have

different views of the network and hence membership lists

for Qi may differ for two peers; however, such issues can be

overcome (for example, see [11]). We assume the following

four simple invariants are true:

1) Goodness: each quorum has size s = Ω(log n) and

possesses at most an ǫ-fraction of Byzantine peers for

ǫ < 1/3.
2) Membership: every peer belongs to at least one quorum.

3) Intra-Quorum Communication: every peer can commu-

nicate directly to all other members of its quorums.

4) Inter-Quorum Communication: if Qi and Qj share an

edge in the quorum topology, then p ∈ Qi may commu-

nicate directly with any member of Qj and vice-versa.

These four invariants are standard in the sense that previous

works on quorums in DHTs ensure they hold with probability

nearly equal to 1. For example, results for maintaining the

goodness invariant in DHTs are known [7]–[9]. In terms of

the membership invariant, there exist quorum topologies where

a peer may belong to several different quorums simultane-

ously [11], [12]. Finally, to the best of our knowledge, no

implementation of a quorum topology exists; this represents

another gap between theory and practice. A number of chal-

lenges remain in bridging this gap and such an endeavor is

outside the scope of this current work. However, the literature

suggests that, with the proper deployment, maintaining these

four invariants in real-world DHTs is plausible.

B. Assumptions

The adversary is assumed to have full knowledge of the

network topology and control all faulty peers, which forms a

constant fraction of all nodes in the system. In concert with the

goodness invariant, strictly less than 1/3 of the peers in any

quorum can be faulty. These peers may collude and coordinate

their attacks. Our adversary is computationally bounded with

a security parameter κ and it has do 2κ computation to break

the security of the Gap Diffie-Hellman (GDH) problem [36]

in an appropriate group.

Our protocols guarantee successful transmission of a mes-

sage; however, feasibility is not enough. Our protocols must

be efficient, both in terms of (1) the costs incurred by correct

peers for legitimate network operations and (2) the costs

incurred by adversarial behavior. The latter concern is crucial

since it does no good to provide solutions that allow the

adversary to easily launch costly attacks. We first discuss

the cryptographic techniques for gaining efficiency and then

elaborate on points (1) and (2).

C. Threshold Cryptography

We use threshold cryptography to authenticate messages.

The idea behind an (η, t)-threshold scheme is to distribute

a secret key among η parties in order to remove any single

point of failure. Any subset of more than t parties can

jointly reconstruct the secret key or perform the required

computation securely in the presence of a Byzantine adversary

which controls up to t parties. We use threshold signatures to

authenticate the communication between quorums.

Threshold Signatures: In an (η, t)-threshold signature

scheme, a signing (private) key k is distributed among η
parties by a trusted dealer using a verifiable secret sharing

protocol [37] or by a completely distributed approach using a

DKG protocol [38]. Along with private key shares ki for each

party, the distribution algorithm also generates a verification

(public) key K and the associated public key shares K̂ . To

sign a message m, any subset of t + 1 or more parties use

their shares to generate the signature shares σi. Any party can

combine these signature shares to form a message-signature

pair S = (m, σ) = [m]k that can be verified using the

public key K; however, this does not reveal k. We refer to

a message-signature pair S as a signature. It is also possible

to verify σi using the public key shares K̂ . We assume that

no computationally bounded adversary that corrupts up to t
parties can forge a signature S′ = (m′, σ′) for a message

m′. Further, malicious behavior by up to t parties cannot

prevent generation of a signature. Here, we use the threshold

version [39] of the Boneh-Lynn-Shacham (BLS) signature

scheme [36] secure under the GDH assumption (see [18] for

more details).

Distributed Key Generation (DKG): In absence of a trusted

party in the P2P paradigm, we use a DKG scheme to generate

the (distributed) private key. An (η, t)-DKG protocol allows

a set of η nodes to construct a shared secret key k such that

its shares ki are distributed over the nodes and no coalition

of fewer than t nodes may reconstruct the secret; no trusted

dealer is required. There is also an associated public key K
and a set of public key shares K̂ for verification.

The protocol in [40] is the first DKG for an asynchronous

setting; therefore, it is uniquely suitable for deployment in a



P2P network. Along with a Byzantine adversary, this protocol

also tolerates crash failures. For a quorum of size s = η, with
t Byzantine nodes and f correct nodes that can crash, the

DKG protocol requires that s ≥ 3t + 2f + 1. In our case,

this security threshold holds due to the goodness invariant in

Section III-A. The DKG protocol allows for system dynamics

without changing the system public key K and this can be

done efficiently by batching; details are given in Section V-B.

D. Spamming Attacks

A critical concern is that the adversary may launch spurious

communications aimed at consuming resources; we refer to

such behavior as spamming. For example, a malicious peer

may initiate a number of data retrieval requests [1], [2]. Here

the situation is more dire since the impact of such attacks is

multiplied by the group action in a quorum-based system.

Ultimately, there is no perfect defence against an adversary

with the resources to initiate massive spamming attacks (or

denial-of-service (DoS) attacks; see the extended version [18]

for more discussion) and this is not our focus. Rather we show

that our protocols do not afford the adversary an advantage in

launching such attacks. Our goal is to prevent the adversary

from forcing a peer to perform expensive operations with

impunity. For any operation initiated by a spammer p, this can
be accomplished by either (A) placing the bulk of the cost of

executing said operation on p or (B) making the detection of

spamming inexpensive. As we will show in Section IV, our

protocol RCP-1 in Section IV-A employs principle (A) while

our protocol RCP-II in Section IV-B employs principle (B).

In addition to cryptographic techniques, we assume a rule

set to reduce the impact of spamming attacks as introduced

by Fiat et al. [11]. A rule set defines acceptable behavior in a

quorum; for example, the number of data lookup operations a

peer may execute per duration of time. Such rules are known

to everyone within a quorum and can be implemented at the

software level or agreed upon by quorum members. Requests

from a peer that deviates from the rule set are ignored by the

other members of its quorum.

E. Efficiency (Not Feasibility) Through Cryptography: The

Prove-and-Verify Scenario

We now discuss the merits of employing cryptographic

techniques. In the presence of Byzantine peers, no single

peer can be trusted. Quorums are employed to overcome this

trust deficit through majority action. Using the simple protocol

outlined in Section I, transmission of a message is guaranteed.

Therefore, quorums allow for robust communication without

the need for cryptographic techniques.

However, spamming attacks still pose a critical problem.

For example, a group of Byzantine peers may pretend to be

a quorum and initiate requests. Therefore, simply obeying a

request because it appears to come from a quorum does not

prevent spamming. A standard fix is that a quorum responds

only to requests that are “proven” to be legitimate. Yet,

there is a cost to proving legitimacy; we explore this to

motivate our protocols. First, we expand on the utility of a

quorum topology in proving legitimacy. We then show how

cryptographic techniques improve the efficiency of this task.

Utility of the Quorum Topology: We compare two general

scenarios in order to demonstrate the utility of a quorum

topology in proving requests legitimate. The first assumes that

proofs and verifications are required to initiate operations;

call this the prove-and-verify scenario. The second assumes

no proof is required before acting (although, each peer may

keep a record of misbehaving peers); call this the passive

scenario. P2P systems often lack admission control and, if

forced to leave the system, a Byzantine peer may simply

rejoin the network with a new identity. In the worst case,

perpetual and rapid rejoin operations result in a DoS attack.

Therefore, we make the standard assumption that there is a

cost for joining the network (for example, monetary costs as

in [31] or CAPTCHAs as suggested in [33]). The best method

of enforcing this cost is beyond the scope of this work.

Let τ denote the rate at which p can issue spurious requests

before being forced to rejoin the system. In the passive

scenario, a Byzantine peer p can contact any quorum Qi by

colluding with other faulty peers to obtain necessary routing

information. Members of Qi act on any request coming from

p. Therefore, a correct peer may be required to maintain

O(n) records so that spam requests are ignored. Moreover,

here τ is large due to the abundance of potential targets. In

contrast, in a prove-and-verify system the members of Qi must

verify p’s proof before acting. Proof and verification may

take different forms. For instance, constructions exist where

two peers communicate only if their respective quorums are

linked [11], [12]; that is, the quorum topology itself acts as

proof. Verification occurs by having a quorum Qi act on p’s
request only if each peer in Qi receives messages from a

majority in Qp. Here τ is smaller; however, there are still

shortcomings to this method of proof and verification.

Efficiency in the Prove-and-Verify Scenario: We argue two

things: (1) the form of proof discussed above is restrictive and

(2) verification is expensive. First, the proof is restrictive since

for Qi and Qj to communicate without sending through in-

termediary quorums, they must maintain links to one another;

such maintenance is costly. Second, the verification process

is expensive because when communication occurs from Qi to

Qj , a correct peer q ∈ Qj must know to which peers in Qi

it must listen; this incurs more maintenance costs. These are

two significant problems with existing schemes.

Cryptography allows us to improve asymptotically on the

message complexity of verification. Under our protocols, each

quorum has a public and private key established using DKG.

Communication can occur between any two quorums that

know and can verify each other’s public key. Therefore, the

form of proof is not as restricted by the quorum topology

and we exploit this in RCP-II. Furthermore, verification is

cheaper; using O(s) messages in RCP-I or O(1) expected

messages in RCP-II. Of course, overhead is incurred by using

cryptography. Message sizes increase by an additional O(κ)
bits and keys shares, but not the key itself, must be updated
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Fig. 2. Our general robust communication scheme. At step i = 1, ..., ℓ− 1,
peer p presents proof, PROOF(Qi), that quorum Qi sanctions p’s action, and
receives new proof from Qi+1 in addition to routing information for the next
hop. At the final step ℓ,peer p sends PROOF(Qℓ−1) and m.

when membership changes. However, our experimental results

in Section V show that this overhead is tolerable since the

computation costs are significantly smaller than the network

latency. Hence, cryptography provides a more efficient and

flexible implementation of the prove-and-verify scenario.

IV. OUR ROBUST COMMUNICATION PROTOCOLS

We propose two robust communication protocols: RCP-I

and RCP-II. Here we outline a general scheme in Figure 2 that

is later refined to give our two protocols. Consider a sending

peer p who wishes to send a message m to peer q. We assume

m is associated with a key value which yields information

necessary for distributed routing; that is, the next peer to which

m should be forwarded is always known. Peer p notifies its

quorum Q1 that it is performing robust communication and

receives PROOF(Q1). Peer p sends this to Q2 as proof that

p’s actions are legitimate; the form of this proof is discussed

later. Depending on the scheme, one or more members of

Q2 examines the proof and, upon verifying it, sends to p:
(1) routing information for Q3 and (2) PROOF(Q2), that will

convince Q3 that p’s actions are legitimate. This continues

iteratively until p contacts the quorum holding q and m is

delivered. We employ the following concepts:

Quorum Public/Private Keys: Each quorum Qi is associated

with a (distributed) public/private key pair (KQi
, kQi

); how-
ever, there are two crucial differences between how such a key

pair is utilized here in comparison to traditional implementa-

tions. First, only those quorums linked to Qi in the quorum

topology, and not everyone in the network, need to know KQi
.

Second, (KQi
, kQi

) is created using the DKG protocol and

K̂Qi
is the associated set of public key shares.

Individual Public/Private Key Shares: Each peer p ∈ Qi

possesses a private key share (kQi
)p of kQi

produced using

DKG. Unlike the quorum public/private key pair of Qi which

must be known to all quorums to which Qi is linked in the

quorum topology, only the members of Qi need to know

the corresponding public key shares K̂Qi
, which plays an

important role in allowing members of Qi to verify that the

signature share sent to peer p is valid.

RCP-I: SENDING PEER p

Initial Step:
1: p ∈ Q1 sends the following request to all peers in Q1:

[pID|paddr|key|ts1]
2: p interpolates all received signature shares to form:

SQ1
← [pID|paddr|key|ts1]kQ1

Intermediate Steps:

3: for i = 2 to ℓ− 1 do

4: p sends SQi−1
and tsi to every peer in Qi and re-

quests a signature SQi
, public key KQi+1

and routing

information for Qi+1.

5: p interpolates received signature shares to form SQi
←

[pID|paddr|key|tsi]kQi
.

6: p verifies if SQi
is valid using KQi

.

7: if (SQi
is invalid) then

8: p sends signature shares to each peer in Qi.
Final Step:

9: p sends Sℓ−1 to D ⊆ Qℓ along with m.

RCP-I: RECEIVING PEER q ∈ Qi

Initial Step:

1: if (q ∈ Q1 receives a request by p) then
2: q checks that a request by p does not violate the rule

set. If the request is legitimate, q sends its signature

share to p.

Intermediate Steps:

3: if (q receives SQi−1
and tsi from p) then

4: q verifies a SQi−1
using KQi−1

and validates tsi;

if successful, q sends its signature share, KQi+1
and

routing information for Qi+1 to p.
5: if (q receives signature shares from p) then
6: q verifies all shares using public key shares and

informs p of invalid shares.

Fig. 3. Pseudocode for RCP-I

A. Robust Communication Protocol I

We now illustrate RCP-I for a peer p who wishes to send

a message m. The path m takes through quorums is denoted

by Q1, ..., Qℓ. We assume that p ∈ Q1 and the target of the

message is a set of peers D ⊆ Qℓ.

Overview: We outline RCP-I; the pseudocode is given in

Figure 3. Initially, the correct peers of Q1 must acquiesce

to p’s request. Peer p begins by sending [pID|paddr|key|ts1] to
all peers in its quorum Q1. The value key corresponds to

the intended destination of m and ts1 is a time stamp. The

message m can also be sent, and its hash can be added inside

the signature below; however, for simplicity, we assume m
is sent only in the last step. Each correct peer q ∈ Q1 then

consults the rule set and sends its signature share to p if p is

not in violation. Peer p interpolates these signature shares to

generate the signature: S1 ← [pID|paddr|key|ts1]kQ1
.

In each intermediate step i = 2, ..., ℓ− 1, p sends its most

recent signature Si−1 and a new time stamp tsi to each peer

q ∈ Qi along the lookup path. Since Qi is linked to Qi−1 in



the quorum topology, each q knows the public key KQi−1
to

verify Si−1. If Si−1 is verified and tsi is valid, q sends back

its signature share, KQi+1
and the routing information. Peer p

collects the shares to form Si and majority filters on the routing

information for Qi+1. In terms of majority filtering, both group

membership and the corresponding routing information are

agreed upon using DKG. Finally, for Qℓ, p sends m along

with Sℓ−1 to peers in the set D.

Share Corruption Attack: Note the following attack: a set

of Byzantine peers B ( Qi send invalid shares to p and,

therefore, p will fail to construct Si. We refer to this attack as

the share corruption attack. Here, the individual public/private

key shares play a crucial role. To obtain Si, p sends the

received shares to each peer in Qi using one message per

peer. For a share sent to p by a peer in Qi, each correct peer

in Qi verifies the share using K̂Qi
. All valid shares are then

sent back to p who creates Si. While members of Qi may

identify those peers which p alleges sent an incorrect share,

punitive action is limited since p could be Byzantine. Note

that the shares are not recomputed; hence, the adversary can

only perform this attack once per step.

Lemma 1. RCP I guarantees that m is transmitted to a target

set of peers D ⊆ Qi for some quorum Qi over a path of length

ℓ with the following properties:

• Both the total message complexity and the message

complexity of the sending peer is each at most 2 · s +
4 · s · (ℓ − 2) + |D|.

• Each non-sending peer has message complexity at most

4 messages.

• The latency is at most 2 · (ℓ− 2) + 2.

For our proof, refer to our extended version [18].

Spamming Attacks: The sending peer p experiences more

cost than other participating peers. In part, this is due to the

iterative nature of the protocol; however, largely this is because

p must send and receive O(s) messages per step. In contrast,

other participating peers need only send and receive a constant

number of messages over the execution of the protocol.

Peer p may misbehave in other ways. For instance, p may re-

peatedly contact its quorum to initiate robust communication;

however, eventually all correct peers will ignore p. Similarly,

using a correct signature, p may repeatedly ask q in another

quorum for proof and/or routing information; however, time

stamps limit such replay attacks. In conclusion, such actions

cannot cause correct peers to perform expensive operations.

B. Robust Communication Protocol II

RCP-II is randomized yielding a small expected message

complexity for both the sending peer and non-sending peers.

In exchange, join and leave operations incur additional cost in

comparison to RCP-I; we discuss this in Section IV-C.

RCP-II utilizes signed routing table information. As a con-

crete example, we assume a Chord-like DHT although other

DHT designs can be accomodated. For a peer u ∈ Qi, each

entry of its routing table has the form [Qj , pID, p
′

ID, KQj
, ts].

Here p ∈ Qj and p′ ∈ Qj−1 where (1) Qi links to Qj and

Qj−1 in the quorum topology, (2) Qj−1 immediately precedes

Qj clockwise in the identifier space and (3) p and p′ are

respectively located clockwise of all other peers in Qj and

Qj−1. KQj
is the quorum public key of Qj , and ts is a time

stamp for when this entry was created. Note that any point in

the identifier space falls between unique points pID and p′ID.

Given this property, and that entries are signed by a quorum,

any attempt by a malicious peer along the lookup path to return

incorrect routing information can be detected. RT Qj
denotes

the routing table information for all peers in Qj . [KQj
]kQi

is

the quorum public key of Qj signed using the private quorum

key of Qi; recall, neighbors in the quorum topology know

each others’ public key. [RT Qj
]kQi

is the routing information

signed with the private key of Qi; entries of the routing

table are signed separately. Routing table information is time

stamped and re-signed periodically when DKG is executed.

Overview: We sketch RCP-II here. For simplicity, we tem-

porarily assume that peers act correctly; our pseudocode in

Figure 4 is complete for when peers fail to respond to

requests by p. Initially, each correct peer in Q1 receives

[pID|paddr|key|ts] from p. The time stamp ts is chosen by p and

peers in Q1 will acquiesce to the value if it agrees with the

rule set to within some bound to compensate for clock drift. If

the request does not violate the rule set, then the information

is signed allowing p to form M1 = [pID|paddr| key|ts]kQ1
.

In the second step of the protocol, p knows the membership

of Q2 and selects a peer q2 ∈ Q2 uniformly at random (u.a.r.)

without replacement. Peer p then sends M1 to q2. Assuming

q2 is correct, it verifies M1 using KQ1 and checks that the ts
is valid; the duration for which a time stamp is valid would be

specified by the rule set. Once verified q2 sends p the infor-

mation [KQ1]kQ2
, [RT Q3

]kQ2
and [KQ3]kQ2

. Peer p knows

KQ2 since Q1 links to Q2 and verifies [KQ1]kQ2
, [RT Q3

]kQ2

and [KQ3]kQ2
, and checks that the time stamp on the routing

information is valid. If so, p constructs M2 = [M1|[KQ1]kQ2
].

Here [KQ1]kQ2
will allow some peer in Q3 to verify KQ1 and

M1, while the signed verified KQ3 will allow p to check the

response from that peer in Q3.

This process repeats with minor changes for the remaining

steps. Using RT Q3
from the previous step, p selects a peer

q3 randomly from Q3 and sends M2. Since Q3 is linked

with Q2 in the quorum topology, q3 knows KQ2, which it

uses to verify [KQ1]kQ2
; this allows q3 to verify M1 signed

with kQ1. Peer q3 then confirms that ts is valid and sends

[KQ2]kQ3
, [RT Q4

]kQ3
and [KQ4]kQ3

to p. Peer p has a

verified public key KQ3 from the previous step and uses it

to verify [KQ2]kQ3
, [RT Q4

]kQ3
, and [KQ4]kQ3

. Then p con-

structs M3 = [M2|[KQ2]kQ3
] = [M1|[KQ1]kQ2

|[KQ2]kQ3
].

This process continues until m is delivered. Figure 4 gives

the pseudocode for RCP-II. Every peer contacted by p verifies

a chain of certificates, which can be converted into a single

signature using the concept of aggregate signatures [41].

It is possible that p chooses a Byzantine peer that may not

respond. In that case, after some appropriate time interval,



RCP-II: SENDING PEER p

Initial Step:

1: p sends the following to each peer q ∈ Q1:

[pID|paddr|key|ts]
2: p gathers all responses and constructs:

M1 ← [pID|paddr|key|ts]kQ1

Intermediate Steps:

3: for i = 2 to ℓ− 1 do

4: while (p does not have Mi and has waited time ∆
since previous selection) do

5: p sends Mi−1 to q ∈ Qi selected u.a.r. without

replacement.

6: if ([KQi−1
]kQi

, [RT Qi+1
]kQi

and [KQi+1]kQi
are

received from any peer in Qi previously selected)

then

7: p uses KQi
to verify KQi+1, RT Qi+1

and

KQi−1.

8: if (KQi+1, RT Qi+1
and KQi−1 are all verified)

then

9: Mi ← [Mi−1|[KQi−1
]kQi

]
Final Step:
10: p sends Mℓ−1 to D ⊆ Qℓ along with m.

RCP-II: RECEIVING PEER q

Initial Step:

1: if (q ∈ Q1 recives [pID|paddr|key|ts] from p ∈ Q1) then

2: q checks that p’s request is legitimate and, if so,

sends its signature share.

Intermediate Steps:

3: if (q ∈ Qi receives Mi−1 from p) then
4: for j = i− 1 downto 1 do

5: q uses KQj
to verify KQj−1.

6: Peer q uses KQ1 to verify M1.

7: if verification is successful then

8: q sends [KQi−1
]kQi

, [RT Qi+1
]kQi

and

[KQi+1]kQi
to p.

Fig. 4. Pseudocode for RCP-II

p will select an additional peer in the quorum. Let X be a

random variable denoting the time required for a correct peer

to respond. We make a weak assumption that Pr[X ≤ ∆] ≥ c
where ∆ is any duration of time and c > 0 is any constant

probability. This does not circumscribe a particular distribution

for response times; in fact, any distribution suffices, including

the Poisson, exponential, and gamma distributions previously

used to characterize round trip time (RTT) over the Internet.

In practice, a peer p would set its own ∆ value by sampling

the network using methods for estimating RTT [42]. Since

there are only a constant fraction of Byzantine peers, taking

the median from a sufficiently large sample will allow p
to determine ∆. As p receives a response from any of the

previously selected peers in Qi, this is in accordance with the

weak synchrony assumption in Section III.

Lemma 2. RCP- II guarantees that m is transmitted to a

target set of peers D ⊆ Qi for some quorum Qi over a path

of length ℓ with the following properties:

• Both the total message complexity and the message

complexity of the sending peer is each at most 2 · s +
(ℓ−2)

(1−ǫ)·c + (ℓ− 2) + |D|.
• Each non-sending peer has expected message complexity

at most 2
(1−ǫ)·c·s .

• The expected latency is at most
(ℓ−2)

(1−ǫ)·c + 2.

For our proof, refer to our extended version [18].

While latency is measured in communication rounds, the

time for executing RCP-II depends on ∆ and we discuss

this briefly. Accounting for the response time incurred in the

intermediate steps, p waits for at most time ∆
(1−ǫ)·c per step in

expectation (again, see [18]). Since peer p will have knowledge

of the response time distribution, p may optimize performance

by selecting ∆ so that ∆
c
is minimized.

Spamming Attacks: Due to the iterative nature of RCP-II, p
sends more messages than other participating peers, but not to

the degree seen in RCP-I. Instead of making it expensive for p
to perform robust communication, RCP-II uses the following

two properties to deter spamming: (1) it is inexpensive for a

correct peer to detect spam and (2) the congestion suffered

by a correct peer is low since the number of messages is not

magnified by the use of quorums.

To address our first point, p may launch as many robust

communication operations as the rule set allows; p may even

try to circumvent the rule set by directly sending to a correct

peer q; however, it is inexpensive for q to verify that the proof

being sent is invalid. The operation terminates at that point

since q will not reply. In contrast to the passive scenario of

Section III-E, q need not keep a history to judge the legitimacy

of a request; it simply verifies the accompanying certificate.

Our second point, and a key difference between RCP-I and

RCP-II, is that with RCP-II an operation incurs only expected

O(ℓ) messages which compares favourably to a system without

a quorum topology. Therefore, the congestion caused by such

requests is not significantly magnified by the use of quorums

which was a key concern regarding spamming.

Adversarial peers may misbehave in other ways with many

of the same consequences and remedies as discussed in RCP-I.

Even with a generous upper bound on the expiration of ts, the
congestion p can cause with a replay attack is again limited

since only p can use the certificate. A notable attack, unique to

RCP-II, occurs when a faulty peer gives p stale routing table

information. Since entries are signed and time stamped, we are

guaranteed that in the fairly recent past, the location indicated

by the stale information was indeed correct. This fact, coupled

with the standard assumption that ID collisions do not occur,

guarantees that the adversary cannot engineer a situation

where requests are forwarded to a faulty peer. Consequently,

the impact of this attack is limited. The search path may

be slightly lengthened by forwarding to an older location.

Alternatively, stale information may point to a peer that no

longer exists or is not the correct recipient, which forces p
to backtrack one hop. These cases are handled easily, but for



ease of exposition, they are not treated in our pseudocode in

Figure 4. In short, routing integrity is not compromised. The

fact that routing tables can be signed periodically every several

minutes without significant CPU cost (see Section V) implies

that the impact of such an attack is negligible.

C. Membership Updates

We discuss the implications of membership changes:

RCP-I: Consider a quorum Qi to which a new peer is added.

The membership update protocol of DKG [40] is executed

to redistribute the shares of the public/private quorum key

pair over all members of Qi. In the process, the individual

public/private key shares are also updated. Notably, no other

quorums are affected by this process as the quorum key pair

remains the same and the individual key shares need only

be known to members of Qi. When a peer leaves Qi, the

departure can be treated as a crash and, so long as the number

of crashes does not exceed the crash-limit f , the DKG protocol

need not be executed. We use this to associate the system churn

rate to the session time of the DKG system. A membership

update may also lead to modification in the crash limit f or

the security threshold t. This can be handled using the group

modification agreement of the DKG protocol [40]. Note that

the adversary may crash some of its t nodes, and in principle,

the system can handle t+ f node leaves. However, we cannot

associate these additional t crashes with the system churn due

to the inherent arbitrary nature of Byzantine peers. In terms

of signature generation, a quorun can sign messages as long

as any t + 1 of n− t honest nodes are up.

RCP-II: When a peer q joins Qi, the DKG protocol needs

to be executed as in the case of RCP-I; however, there are

additional costs due to the need to update and re-sign the

routing table information. In particular, not only do the peers

in Qi need to update and have signed their routing table

information (to reflect the addition of q), all quorums to which

Qi is linked under the quorum topology also need to update

and re-sign their routing table information; note that this does

not require any revocation since the public key does not

change.Therefore, a join event under this scheme does affect

other quorums. When a peer leaves Qi, the DKG protocol may

need to be executed as in the case of RCP-I. However, routing

table information for Qi and the quorums to which it links

must again update and re-sign their routing table information.

Therefore, while RCP-II reduces message complexity, the cost

of join/leave operations is higher in comparison to RCP-I.

V. EXPERIMENTAL RESULTS

We examine the performance of DKG and our two protocols

on the PlanetLab platform [43]. Based on our experimental

results and known churn rates, we propose parameters for

DHTs using our protocols.

A. Implementation and Microbenchmarks

The DKG protocol is a crucial component of our protocols.

It is required to initiate a threshold signature system in a

quorum and to securely manage membership changes. We

use a C++ implementation [44]. We incorporate threshold

TABLE I
MEDIAN VALUES OF DKG COMPLETION TIME AND CPU TIME

PER NODE FOR VARIOUS s VALUES.

s t f Completion Time (sec) CPU Seconds/Node

10 1 3 5.73 0.76
15 2 4 18.0 1.94
20 2 6 68.0 2.55
25 3 7 290.9 6.13
30 3 10 336.7 7.27

BLS signatures into this implementation and realize our two

protocols using this setup on PlanetLab.

Distributed Key Generation: We test the DKG implemen-

tation for quorum sizes s = 10, 15, 20, 25, 30 and present

median completion times and median CPU usage in Table

I. The median completion periods vary from 6 seconds for

s = 10 to more than 5 minutes for s = 30. The bulk of this

latency is due to network delays; in contrast, the required CPU

time is far smaller than the completion periods.

In the next subsection, we examine the feasibility of these

completion periods. Our DKG experiments assume that 30%
of the peers may crash and 10% of the peers may be Byzantine.

While we can tolerate any fraction of Byzantine peers less than

1/3, we use these numbers since in many practical scenarios

we expect the fraction of Byzantine faults to be less than 10%
and modest compared to the fraction of crash failures.

RCP-I and RCP-II: For our RCP-I and RCP-II experiments,

we set s = 30, t = 3, and f = 10. In RCP-I, a node requires

0.14 seconds on average to obtain a threshold signature from

a quorum, if all of the obtained signature shares are correct.

The average execution time increases to 0.23 seconds in case

of a share corruption attack. Extrapolating to a path length ℓ,
an operation should take 0.14 ·ℓ to 0.23 ·ℓ seconds on average.

For a DHT with 105 nodes, the average total time for RCP-I

is then 3 to 4 seconds with ℓ = 20.
In RCP-II, a node takes 0.04 seconds on average to obtain

the required signed public keys and the signed routing in-

formation from a correct peer. A single signature verification

takes 0.004 seconds on average. The median latency value over

Planetlab is roughly 0.08 seconds [45]; ∆ = 0.08 seconds for

c = 0.5. With a chain of signed public keys of length ℓ, the
total communication time is 0.14+0.04 · (ℓ− 1)+ ·∆·(ℓ−2)

c·(1−ǫ) +

0.004 · ℓ(ℓ−1)
2 which for 10% Byzantine peers, is 4.68 seconds

in expectation. To a first-approximation, the execution times

of our protocols seem quite reasonable.

System Load: We address the issue of system load under the

assumption that signature verification is the most significant

computational operation. We make back-of-the-envelope cal-

culations to obtain the expected order of magnitude for our

performance figures. For RCP-I, from the above discussion,

each signature verification takes 0.004 seconds; thus, the total

CPU time required per execution is 0.004 · ℓ · (1 + s + s2);
this includes the costs due to share corruption attacks. For

ℓ = 20 and s = 30, this value is 75 CPU seconds, spread out

over 600 nodes. Therefore, the number of executions of RCP-

I that can be started per second on average is n/75 ≈ 103

when n = 105. Note this rate value is for the entire system.

Now, if no share corruption attacks occur, the total CPU time



TABLE II
THE EXPECTED NUMBER OF SECONDS BEFORE A QUORUM

EXPERIENCES A MEMBERSHIP CHANGE (rQ).
s 10 15 20

nQ 1 2 3 1 2 3 1 2 3
rQ 526 351 175 350 234 117 263 132 88

25 30

1 2 3 1 2 3
210 140 70 175 87 58

required per execution becomes 0.004 · ℓ · (1 + s) which, for

the same parameter values, is 2.5 CPU seconds. This implies

that 4 ·104 executions can be started per second on average in

the entire system. For RCP-II, the total CPU time required for

execution is given by 0.004·
(
ℓ + (ℓ−1)·ℓ

2·(1−ǫ)

)
which, for the same

parameters and ǫ = 1/10 is roughly 1 CPU second on average.

Therefore, approximately 105 executions can be started per

second on average in the entire system.

B. Analysis and Discussion

As mentioned in Section III-A, important questions remain

with regards to translating theoretical results to a practical

setting. In particular, two quantities of interest are the size of

quorums, s, and the number of quorums to which each peer

belongs, nQ. Unfortunately, pinning down these quantities

is non-trivial. Only asymptotic analysis is present in the

literature. Furthermore, it is not a simple case of substituting

hard numbers because s depends on a number of parameters:

(1) the exact guarantees being made, (2) algorithms for quorum

maintenance, (3) the tools of analysis (i.e. form of Chernoff

bounds used) and many more. Evaluating these parameters is

outside the scope of this work. Instead, we assume a range

of values for s and nQ. As our protocols appear to be the

most efficient to date, the following results illuminate what

currently seems possible in practice.

System Churn and DKG: The performance of our two

protocols will likely depend on system churn. A common

metric for measuring the degree of churn is session time:

the time between when a node joins the network and when

it leaves [46]. As discussed in Section III-E, we make the

standard assumption that the cost of joining the network is

large enough so as to prevent the adversary from substantially

increasing the rate of churn through rapid rejoin operations.

Part I - An Argument for Batching: Investigations have

yielded differing measurements for median session times. The

Kazaa system was found to have a median session time of

144 seconds [47]. In the Gnutella and Napster networks, the

median session time was measured to be approximately 60
minutes [48]. Measurements of the Skype P2P network yielded

a median session time of 5.5 hours for super-peers [49]. Here,

we temporarily assume a median session time of 60 minutes

and a standard Poisson model of peer arrivals/departures as

in [46], [50]. To calculate churn rate, r (number of ar-

rivals/departures per second), based on the median session

time tmed (in seconds), we use the formula of [46]: r =
(n·ln 2)/tmed. For n = 105 and tmed = 3600 seconds, r ≈ 19.
Assuming that join and leave events occur independently of

each other, Table II gives the expected number of seconds, rQ,

TABLE III
MEDIAN SESSION TIMES (IN HOURS) DERIVED FROM VALUES FOR

s, nQ AND rDKG (IN HOURS).
s 10 15 20

rDKG 0.167 0.25 0.33
nQ 1 2 3 1 2 3 1 2 3

tmed 0.19 0.39 0.58 0.66 1.32 2.00 0.81 1.62 2.44

25 30
0.42 0.5

1 2 3 1 2 3

1.23 2.46 3.70 1.23 2.47 3.70

at which point a quorum will undergo a membership change

when each peer belongs to nQ quorums. Our choice of nQ ≤ 3
is based upon the reasonable assumption that overlap occurs

only with immediate neighboring quorums in the ID space.

In several cases, the rQ values are less than the corre-

sponding median DKG completion times in Table I. Therefore,

a quorum may not be able to execute DKG often enough

to accommodate each membership change. However, join

operations can be queued and performed in batches. Executing

DKG for a batch of joins does not increase the message

complexity and message size increases only linearly in the

batch size (see [40, Sec. 6]). Therefore, batching can mitigate

the effects of churn and it seems plausible that peers would

tolerate some delay in joining in exchange for security.

Part II - Batching and the Security Threshold: Batching

join events improves performance; however, many peers might

leave a quorum before a new batch is added, thus violating

the security threshold. Hence, we are interested in the session

time value required such that this is not likely to occur. Based

on Table I for s = 20 and nQ = 1, DKG completes within

68 seconds. The number of leave events a quorum can suffer

while not exceeding the crash limit is f = 6. If Byzantine

peers leave, more crashes are tolerable; however, identifying

such events is impossible, so we assume the worst case of f =
6. Assuming DKG executes every rDKG = 1200 seconds, we

seek the median session time such that at most 6 peers leave

the system within 1268 seconds. With n/s = 5000 quorums

in the system, each experiencing 6 leave events within 1268
seconds, the system churn rate is r = 23.7. This gives tmed =
2930 or, equivalently, 49 minutes. Therefore, with this tmed,

we expect the system to remain secure. Moreover, a quorum

only spends 68/1268 = 5.4% of the time executing DKG.

Certain parameters can be tuned to offer performance trade-

offs. Decreasing rDKG yields smaller required median ses-

sion times; however, the percentage of time spent on DKG

increases. Such tuning would depend on the desired system

performance, the application, and s and nQ. Table III gives

session time calculations for other values of s, rDKG and nQ.

Required session times increase with s. Notably, for s = 30
and nQ = 1, tmed does not far exceed the 60 minutes in [48].

As nQ increases, the required session times grow linearly.

However, our maximum of 3.7 hours is still less than tmed

measured for super-peers in the Skype network [49]. We

tentatively conclude that our protocols can be deployed in

applications where session times range from 10 minutes to

a few hours and that such applications currently exist.



VI. FUTURE WORK

The performance of a complete system is an important

open question. The quorum topology chosen is crucial and

optimizing this in practice is a topic of future work. While we

focus on DHTs, our results may apply to other P2P designs

and more general settings where groups of machines, some

with untrustworthy members, must communicate; it would be

of interest to identify such applications.
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