
Practical PIR for Electronic Commerce∗

Ryan Henry
Cheriton School of Computer Science

University of Waterloo
Waterloo ON Canada N2L 3G1

rhenry@cs.uwaterloo.ca

Femi Olumofin
Cheriton School of Computer Science

University of Waterloo
Waterloo ON Canada N2L 3G1

fgolumof@cs.uwaterloo.ca

Ian Goldberg
Cheriton School of Computer Science

University of Waterloo
Waterloo ON Canada N2L 3G1

iang@cs.uwaterloo.ca

ABSTRACT
We extend Goldberg’s multi-server information-theoretic private
information retrieval (PIR) with a suite of protocols for privacy-
preserving e-commerce. Our first protocol adds support for single-
payee tiered pricing, wherein users purchase database records with-
out revealing the indices or prices of those records. Tiered pricing
lets the seller set prices based on each user’s status within the sys-
tem; e.g., non-members may pay full price while members may
receive a discounted rate. We then extend tiered pricing to sup-
port group-based access control lists with record-level granularity;
this allows the servers to set access rights based on users’ price
tiers. Next, we show how to do some basic bookkeeping to imple-
ment a novel top-K replication strategy that enables the servers to
construct bestsellers lists, which facilitate faster retrieval for these
most popular records. Finally, we build on our bookkeeping func-
tionality to support multiple payees, thus enabling several sellers to
offer their digital goods through a common database while enabling
the database servers to determine to what portion of revenues each
seller is entitled. Our protocols maintain user anonymity in addition
to query privacy; that is, queries do not leak information about the
index or price of the record a user purchases, the price tier accord-
ing to which the user pays, the user’s remaining balance, or even
whether the user has ever queried the database before. No other
priced PIR or oblivious transfer protocol supports tiered pricing,
access control lists, multiple payees, or top-K replication, whereas
ours supports all of these features while preserving PIR’s sublinear
communication complexity. We have implemented our protocols
as an add-on to Percy++, an open source implementation of Gold-
berg’s PIR scheme. Measurements indicate that our protocols are
practical for deployment in real-world e-commerce applications.

General Terms
Algorithms, Design, Security

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce—security,
payment schemes; H.2.0 [General]: Security, integrity, and protec-
tion; H.2.4 [Database Management]: Systems—distributed data-
bases, query processing.
∗An extended version of this paper is available [36].
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

Keywords
Private information retrieval, PIR, e-commerce, access control, ze-
ro-knowledge proofs, privacy-enhancing technologies, PETs.

1. INTRODUCTION
Private information retrieval (PIR) provides a means of query-

ing a database without the database being able to learn any infor-
mation about the query [22]. In multi-server PIR, ` database ser-
vers each possess a replica of the database and a user submits his
query to some size-k (or larger) subset of these servers in such a
way that no server (or coalition of servers up to some threshold t)
can learn the user’s query. One can view the database X as con-
sisting of n bits organized into r records, each of size b = n/r
bits. We follow the usual convention of specifying a PIR query
by the index i of interest. Thus, in a PIR query, the user retrieves
the record at index i without the servers learning any information
about i. We note, however, that existing approaches allow one to
build queries that are more expressive on top of this basic setup; for
example, keyword-based lookups [21] or simple SQL queries [48].
Using these techniques in conjunction with the ideas in this paper
is straightforward.

Existing multi-server PIR schemes offer information-theoretic
privacy protection for the user’s query, but they allow a dishonest
user to obtain additional information, such as the record at index
j 6= i, or the exclusive-or of some subset of records in the data-
base [31]. However, for many real-world applications, protecting
database privacy by preventing dishonest users from learning extra
information about the database is advantageous. Examples abound
in online sales of digital goods, such as a pay-per-download mu-
sic store [1] where users must pay for each song they download,
a pay-per-retrieval DNA database [17], a stock-information data-
base [31], or a patent database [2]. In all of these practical situa-
tions, it is necessary to guarantee the seller of these digital goods
that users learn exactly the database record of interest and nothing
more. In some scenarios it may even be desirable to sell database
records according to a tiered pricing plan whereby different users
pay different prices for each record depending on, e.g., their mem-
bership status or geographic location.

Symmetric private information retrieval (SPIR) [31] adds an ad-
ditional restriction to PIR that prevents the user from learning in-
formation about any records except for the one he requested, thus
addressing the need for simultaneous user and database privacy;
however, no existing SPIR scheme supports both (tiered) record-
level pricing and access control lists. Some oblivious transfer (OT)
schemes [1, 17–19] offer one or the other of these functions, but
no scheme in the literature provides them both. Moreover, OT
schemes generally have no requirement for sublinear communi-
cation complexity, which renders them useless for online sales of

mailto:rhenry@cs.uwaterloo.ca
mailto:fgolumof@cs.uwaterloo.ca
mailto:iang@cs.uwaterloo.ca

some types of digital goods, such as multimedia data, where the
bandwidth requirement is high. Some schemes even require the
user to download an encrypted copy of the entire database (e.g.,
[17–19]) and later purchase decryption keys for individual encryp-
ted records. This allows one to amortize the cost of many transac-
tions, but renders the scheme unsuitable for applications in which
the contents of the database change frequently. Storing the data-
base in an encrypted format also limits the usefulness of the data-
base for other applications that need ready access to the cleartext
data. Other OT-based schemes [1] require the database servers to
store state information, such as the number of purchases made by a
user, or his remaining balance, which might leak information about
the user’s queries or enable the server to link his purchases.

In this paper, we present a protocol that extends the open-source
PIR scheme by Goldberg [33] to a priced symmetric private in-
formation retrieval (PSPIR) scheme offering tiered pricing with
record-level granularity. Our initial PSPIR construction is a sim-
ple ‘single payee’ scheme wherein a single content provider (CP)
sells digital goods through a distributed database and collects all
proceeds from these sales. We then extend this simple scheme in
three important ways. First, we introduce a slight modification to
the protocol that enables the database servers to control access to
individual records by implementing group-centric access control
lists. Next, we propose a novel top-K replication strategy that
makes it possible for the database servers to periodically identify
and replicate the K most popular records to a smaller database —
i.e., to construct a bestsellers list — thus facilitating more efficient
retrieval for these most popular items. Finally, we show how to
adapt the single-payee scheme to scenarios in which multiple (pos-
sibly competing) CPs sell their own digital goods through a com-
mon database and, using a distributed bookkeeping protocol, deter-
mine to what portion of the proceeds from these sales each seller is
entitled. These enhancements provide a stronger and more realistic
model of private information retrieval that enables e-commerce to
coexist happily with strong privacy protection.

In our model, users belong to different pricing tiers and pay (per-
haps different amounts) for each record; moreover, the database
may require users to have explicit authorization to access some or
all of the records in the database. In particular, tiered pricing logi-
cally groups users into different price tiers and allows the database
to set the price and availability of each record with respect to each
tier (a price tier is then roughly analogous with a group in the con-
text of access control). Our approach enforces these constraints
without revealing the user’s price tier to the servers during a pro-
tocol run. Thus, when combined with an anonymous communica-
tions channel, our protocols maintain user anonymity in addition to
query privacy; that is, the database servers do not learn any infor-
mation about the identity nor the query of the user. More specif-
ically, queries do not leak information about the index or price of
the purchased record, the price tier according to which the user
pays, the user’s remaining balance, or even whether the user has
ever queried the database before.

Outline.
We organize the remainder of this paper as follows: §2 introduces
our system model, including our design goals and threat model, and
an example use case for our scheme. §3 presents our notation and
the basic building blocks we use in our protocols. Our main contri-
bution follows in §4, where we describe each of our constructions
in depth. In §5, we discuss our implementation and the results of
some empirical performance evaluations we ran on it. We then pro-
ceed to differentiate our approach from related solutions in §6, and
finally conclude the paper with a summary in §7.

2. SYSTEM MODEL
Our basic scenario consists of three parties: the user interested

in purchasing digital goods, the server having a database contain-
ing potentially tens or hundreds of gigabytes of data that is divided
into r records (or files), and the bank, an independent issuer of dig-
ital wallets (see below). We build our scheme from multi-server
information-theoretic PIR; thus, the server is actually comprised
of ` independent PIR servers that each hosts a complete replica of
the database. Users submit their queries to any subset of at least
k > `/2 servers of their choosing. We associate one or more price
lists ~p1, . . . , ~pT with the database, where there are T tiers and each
price list specifies a price for each of the r individual records. For
simplicity, we represent price lists by length-r vectors of nonneg-
ative integers (or ⊥ to indicate that a record is unavailable in this
price plan), although representations that are more efficient are typ-
ically possible and using one of these representations changes the
protocols only superficially. Users’ wallets are kept with any non-
rerandomizable (one-show) anonymous credential scheme, such as
that of Brands [10] or that of Au et al. [3]; the wallet encodes as
attributes a balance and the index π of the price list according to
which the owner of that wallet must pay, called that user’s price
tier or simply his tier. (For example, one price tier might apply to
members while another price tier might apply to non-members; in
general, any number of tiers may exist, although a large number
of tiers might adversely affect system performance.) The tier π is
encoded in the credential in a special way: each wallet encodes a
collection of T attributes x1, . . . , xT such that xi = 1 if i = π and
xi = 0 otherwise. The bank initially issues each user with a wallet
encoding the balance 0; users may charge their wallets at any time
using, e.g., a prepaid credit card obtained via cash transaction from
a grocery store. We make no assumptions regarding noncollusion
between the bank and the database servers; indeed, it is not even
required that the bank and database servers be different entities,
although synchronization challenges may emerge in the case of a
distributed bank. We do not discuss the full semantics of the bank,
since this is not our focus in this paper and such details depend on
the chosen credential system.

To query for the record at index β, the user must first prove
that his wallet encodes sufficient funds to purchase that particular
record according to his tier. To do so, the user must send his current
wallet to each of at least k servers, which makes the task of detect-
ing double spending particularly easy (via the pigeonhole principle)
since the wallet is not rerandomizable and k > `/2. Along with his
query response, the user receives a cryptographically signed receipt
encoding the price paid for the query and the wallet used to make
the payment. The user then uses this receipt to refresh his wallet
with the bank; i.e., to obtain a new wallet (which is unlinkable to
his old wallet) encoding his new remaining balance. This refresh-
ing step does not reveal any information to the bank about the user’s
(old or new) balance, his tier, or the price encoded in the receipt.

Before discussing our constructions in further detail, we first
present our high-level design goals and our threat model, as well
as some motivation by way of a simple example use case that uses
our full suite of protocols.

2.1 Design goals
We are interested in enhancing Goldberg’s PIR protocol to yield

a scheme with the following properties.

Utility.
In addition to PIR’s standard functionality, we seek to provide

the database servers with the following capabilities.

Tiered pricing: Users pay predetermined amounts for each re-
trieved record. The system assigns each user to a price tier
and the prices they pay depend on both this tier and the par-
ticular records they purchase.

Access control: The database servers may set the availability of
each record with respect to users of each price tier.

Replication: The database servers can dynamically learn which
records are most popular without revealing information about
individual users’ query patterns. This allows popular records
to be accessed at a lower computation and communication
cost than their less popular counterparts.

Bookkeeping: A common database may sell records from mul-
tiple CPs while ensuring that each CP receives the correct
share of profits based on sales of its own records.

Security and privacy.
Traditional databases can already offer all of the above function-

ality, and more. What makes our situation unique is that we wish to
provide this functionality while offering strong privacy protection,
both for users and for CPs.

Correctness: Users with sufficient funds and privileges can al-
ways retrieve a consistent copy of their desired record.

Query privacy: The database servers and bank learn no non-
trivial information about the records accessed by a user.

User anonymity: The database servers and the bank learn only
that ‘some user with sufficient funds and privileges retrieved
some record’; i.e., they learn no other information about a
user’s identity (including whether or not this user has previ-
ously queried the database), the price he pays for a record, or
the past or present balance encoded in his wallet.

Database privacy: Dishonest users cannot learn any extra infor-
mation about database records that they do not purchase.

Practicality.

Computational cost: Any increase in the computational cost of
the underlying PIR scheme should be small and scale sublin-
early in n and at most linearly in r.

Query size: The size of users’ queries should increase by no more
than a small multiplicative factor as compared to the underly-
ing PIR scheme. Furthermore, the size of the query response
should increase by no more than a small additive constant.

Round complexity: The protocols should add at most one addi-
tional round of interaction to the PIR protocol, per query.

2.2 Threat model
We consider a threat model in which users of the system are po-

tentially malicious, while database servers and CPs (as well as the
bank) are honest-but-curious (i.e., semi-honest); however, Gold-
berg’s PIR scheme — and by extension, our own proposed scheme
— is robust against some threshold of malicious database servers
as well. Users of our system have obvious incentives for being ma-
licious; for example, they may wish to learn about records that they
cannot afford (or for which they simply do not want to pay), or to
retrieve records for which they do not have authorization. More-
over, in e-commerce situations, unscrupulous competitors may try

to subvert the bookkeeping and replication functionality by acting
as users and submitting specially crafted, malformed queries. The
system must provide the database servers with strong security guar-
antees against all such attacks.

Honest-but-curious database servers may collude among them-
selves (and the bank) to try to reveal the identity of a user, the price
tier or balance encoded in his wallet, or the content of his queries.
The system should be secure against attacks on user anonymity re-
gardless of who may be colluding with whom, and should be secure
against attacks on query privacy provided an honest majority exists
among the database servers.1 Malicious database servers may also
try to compromise the integrity of the system by refusing to re-
spond to user queries or by returning incorrect results in an effort
to prevent a user from obtaining his desired record or a valid re-
ceipt. The system should be robust to some number of malicious
database servers and should allow affected users to learn the iden-
tity of whichever servers misbehave. We do not consider the case
of an actively malicious bank, but we do note that a fair exchange
protocol such as the one proposed by Camenisch et al. [18] can also
mitigate threats associated with a malicious bank.

We argue that our assumption of semi-honest database servers
is realistic for many practical e-commerce scenarios, particularly
in the multiple-payee variant of our protocol where the CPs them-
selves may host some or all of the database servers. In this setting,
several distinct and possibly competing CPs cooperate to provide
a value-added service to their customers (i.e., a privacy-preserving
way to purchase their digital goods). On the one hand, the CPs have
a vested interest in cooperating, since providing this service to their
customers would otherwise be infeasible. On the other hand, com-
peting CPs have an incentive not to divulge additional information
about customer spending to one another, lest this information help
the other CPs gain a competitive advantage over them.

2.3 A hypothetical use case
As a hypothetical use case to motivate our protocols, we consider

an online seller of e-books akin to Amazon’s Kindle Store. One
can easily envision similar use cases for other online retailers (e.g.,
Google’s Android Market); we consider an e-book store because
the size of these increasingly popular digital goods makes them
ideal candidates for distribution using PIR. In light of the Amazon’s
2010 lawsuit against the state of North Carolina seeking to prevent
the disclosure of customer purchase records [44], we also feel it
is especially fitting to demonstrate how our platform could replace
Amazon’s current e-book sales model to provide a more privacy-
friendly experience for customers, and to mitigate the risk of such
egregious attacks on privacy in the future.

Suppose a number of independent publishers wish to team up to
form a privacy-preserving alternative to the Kindle Store, wherein
users can purchase electronic copies of these publishers’ books
without revealing their identities or facilitating the construction of
privacy-invasive dossiers detailing their purchasing habits.2

Each publisher hosts a database server containing a replica of the
entire e-book catalogue and users purchase e-books from this data-

1Of course, if sufficiently many database servers collude to reveal
the content of a user’s query, they may learn some information
about that user’s identity; for example, by noting if the user re-
trieves a record that is only available to certain tiers of users, or by
making inferences based on external knowledge. We cannot pro-
tect against such attacks, so in these cases we aim only to minimize
the information made available to the adversary.
2If the publishers desire an Amazon-style recommendation system,
existing approaches to privacy-preserving targeted advertising [34,
38, 56] may apply; however, we leave further investigation of this
idea for future work.

base using PSPIR. Periodically, (for example, weekly) the publish-
ers cooperate to learn to what portion of the profits each is entitled.
They also use this opportunity to determine the top-K best sellers,
which they subsequently replicate to a smaller database to facili-
tate faster purchases of these books. Much like Amazon does with
the Kindle Store [26], the publishers can sell the same e-book to
users that are registered in different geographical locations for dif-
ferent prices, thus enabling them to recoup costs associated with,
e.g., service fees incurred by offering customers free 3G service to
purchase their books from a mobile device.

3. BUILDING BLOCKS
This section introduces our notation and the cryptographic prim-

itives that we use in our construction.
For notational convenience, we use δij to denote the well-known

Kronecker delta function; that is, δij = 1 if i = j, and δij =
0 otherwise. We also define the complementary Kronecker delta
function, δ̄ij = (1− δij). We use Zm to denote the ring of integers
modulo m (or the finite field of order m when m is prime); we will
represent elements of Zm by elements of {0, . . . ,m − 1}. Zm[x]
denotes the ring of polynomials with coefficients in Zm, and (Zm)r

the set of length-r vectors over Zm (and similarly for (Zm[x])r).
We write a ∈R Zm to mean that a is selected uniformly at random
from {0, . . . ,m− 1}. The notation a‖b denotes concatenation (as
strings) of values a and b. κ ∈ N is a parameter used to tune the
soundness versus performance of certain zero-knowledge proofs.

Let G1, G2 and GT be cyclic groups of prime order q (which
we shall express multiplicatively). We assume throughout the exis-
tence of a bilinear pairing function e : G1 × G2 → GT ; we also
assume that g, h ∈ G1, ĝ ∈ G2 and gT, hT ∈ GT are known gen-
erators of their respective groups, where gT = e(g, ĝ) and hT =
e(h, ĝ). The crucial property of e is that of bilinearity: e(ga, ĝb) =
e(g, ĝ)ab for all a, b ∈ Zq . If G1 = G2, the pairing is called sym-
metric; otherwise it is asymmetric. Elements of G1 in asymmetric
pairings are shorter than in symmetric pairings. The pairing e we
assume in this work is asymmetric.

3.1 Shamir secret sharing
We make extensive use of Shamir’s polynomial secret sharing

scheme [54] to share field elements among the servers. An element
a ∈ Zq is shared by choosing a polynomial fa(x) = atx

t + · · ·+
a1x + a ∈ Zq[x] with each non-constant coefficient ai ∈R Zq
and the constant term equal to the shared value; server j’s share
of a is then fa(j) ∈ Zq . Any subset of at least t + 1 servers can
cooperate to reconstruct a using Lagrange interpolation [45, Ch.
12]; however, t or fewer colluding servers cannot deduce any non-
trivial information about a. Such a scheme is called a (t + 1, `)-
threshold secret sharing scheme, since a threshold of at least t + 1
out of ` servers must cooperate to recover the secret value. In gen-
eral, any choice of 0 < t < ` will suffice, however our top-K
replication protocol requires that t ≤ b(`− 1) /2c. We recom-
mend t = b(`− 1) /2c, which ensures that the protocols are se-
cure whenever an honest majority exists among the servers. We
write [a]q to denote a Shamir secret sharing of a ∈ Zq among the `
servers; that is, [a]q = 〈fa(1), . . . , fa(`)〉where the j th component
of this vector is known only to server j.

Computing with Shamir secret shares.
Suppose [a]q and [b]q are two shared secrets and c ∈ Zq is a pub-

lic scalar. We write [a]q⊕ [b]q , [a]q	 [b]q and [a]q� [b]q to denote
the component-wise sum, difference and product, respectively, of
[a]q and [b]q (and similarly for [a]q ⊕ c, [a]q 	 c and [a]q � c).
Observe that [a]q ⊕ [b]q = [a+ b]q and [a]q 	 [b]q = [a− b]q (and

similarly for [a]q ⊕ c and [a]q 	 c), and that c � [a]q = [c · a]q .
Moreover, the product [a]q�[b]q yields a (2t+1, `)-threshold shar-
ing of a · b; thus, when t ≤ b(`− 1) /2c as we require above, the
servers can still interpolate to recover this product.

It is possible to construct algorithms for more complex opera-
tions using the above facts; e.g., distributed pseudorandom num-
ber generation [4], testing equality [25], or evaluating order pred-
icates [46]. Indeed, we implicitly use these more complex opera-
tions for top-K replication, but do not discuss them in depth. The
interested reader can consult Nishide and Ohta’s paper [46] for fur-
ther details on how to implement them.

3.2 Goldberg’s PIR scheme
Goldberg’s PIR scheme [33] is a multi-server information-theo-

retic scheme with good support for query robustness against col-
luding servers. It provides a t-private v-Byzantine-robust k-out-of-
` scheme for 0 < t < k ≤ ` and v < k − b

√
ktc protection.

In other words, users submit their queries to at least k out of the `
servers, and the system can tolerate up to v servers being Byzan-
tine (i.e., responding incorrectly) without inhibiting the ability of
users to retrieve the correct record, and t servers colluding without
compromising users’ query privacy. The scheme also optionally
supports τ -independence [30], a property that prevents the database
servers from learning the contents of the database with information-
theoretic protection against coalitions of up to τ servers.

The scheme structures the n-bit database X as an r × s ma-
trix D over Zq , where r is the number of records, b is the size
of each record (in bits), w = blg qc is the word size, and s =
b/w is the number of words per record. For minimal communi-
cation, b =

√
wn. The user’s query is a standard basis vector

~1β ∈ (Zq)r , which has all elements 0 except for index β where it
is 1. The scheme uses Shamir secret sharing to split ~1β into k parts
~ρ1, . . . , ~ρk, which the user sends to the respective PIR servers.

A user queries for the record at index β by choosing a vector of
r polynomials, ~f = 〈f1, . . . , fr〉, each of degree (at most) t, with
uniformly random coefficients from Zq for the non-constant terms.
The constant term of fi is δiβ . In addition, the user chooses k dis-
tinct server indices I1, . . . , Ik and forms k vectors of Zq elements
by evaluating ~f component-wise at the k respective indices; that
is ~ρj = 〈f1(Ij), . . . , fr(Ij)〉. The user forwards ~ρj to server Ij ,
while each server Ij computes an s-element vector Rj = ~ρj · D
and returns it back to the user. Finally, the user computes the record
at index β from the Rj by using Lagrange interpolation (and also
Guruswami-Sudan list decoding [35] if some servers are Byzantine
or malicious).

3.3 Threshold BLS signatures
The BLS signature scheme [8] is a ‘short’ signature scheme that

uses a pairing function for signature verification. The signer’s pri-
vate signing key is a random integer x ∈ Zq , and the correspond-
ing public verification key is (ĝ, ĝx) (recall that ĝ is a generator
of G2). Given the signing key x and a message m, the signature
is computed via σ = hx where h = hash(m) is a cryptographic

hash of m; the verification equation is e(σ, ĝ)
?
= e(h, ĝx). We

use the (k, `)-threshold variant (and also the (k, k)-threshold vari-
ant) of BLS signatures; in both cases, the signing keys are evalua-
tions of a polynomial of degree k − 1 and the master secret is the
constant term of this polynomial. The user recombines signature
shares via Lagrange interpolation in the exponent. Note that by
publishing the individual ‘verification key shares’ of each signer,
threshold BLS signatures provide some level of robustness against
Byzantine signers since each signature share can also be verified
independently by using the signer’s public verification key share.

3.4 Polynomial commitments
Polynomial commitments [40] allow a prover to form constant-

sized commitments to polynomials in such a way that a verifier can
later use these commitments to confirm evaluations of the commit-
ted polynomials without revealing any additional information about
them. We use the PolyCommitDL construction of Kate et al. [40],
which provides unconditional hiding if the commitment is opened
to at most t−1 evaluations (for a degree-t polynomial) and compu-
tational hiding under the discrete log (DL) assumption if the poly-
nomial is opened at a tth point (t+ 1 or more openings is sufficient
to interpolate and thus recover the committed polynomial), as well
as their PolyCommitPed construction, which offers unconditional
hiding even when t evaluations are revealed. Their constructions
are based on the polynomial remainder theorem: if f is a polyno-
mial, then the remainder obtained by dividing f(x) by x−r equals
f(r); in other words, x− r divides f(x)− f(r). We describe how
PolyCommitDL works, and refer the reader to [40] for details on
the similar PolyCommitPed construction. A commitment to the
polynomial f(x) = atx

t + · · · + a1x + a0 in PolyCommitDL

has the form Cf = (gα
t

)at · · · (gα)a1ga0 = gf(α), where α is se-
cret, g ∈ G1 is a generator, and all bases (as well as ĝ and ĝα) are
part of the commitment scheme’s public key. If PolyCommitPed

commitments are used, then the public key includes the additional
values hα

t

, . . . , hα, h, where h ∈ G1 is a generator whose discrete
logarithm with respect to g is unknown. To open an evaluation of
f at x = r, the prover invokes CreateWitness (f, r), which
outputs a polynomial commitment w to the quotient obtained upon
division of f(x)−f(r) by x−r; the commitmentw is called a wit-
ness. The verifier can confirm the claimed evaluation by checking if
Ver (Cf , r, f(r), w) =

[
e(Cf , ĝ)

?
= e(w, ĝα/ĝr) · e(g, ĝ)f(r)

]
is

true. Note that in [40], polynomial commitments are constructed
over a symmetric pairing, whereas in this work we construct our
polynomial commitments over an asymmetric pairing, since we
wish to reuse this pairing for short threshold BLS signatures.

Much like traditional discrete logarithm commitments [27] and
Pedersen commitments [52], polynomial commitments are addi-
tively homomorphic and scalar multiplication of committed values
can be computed by exponentiating the commitment by the scalar.
We exploit both of these facts extensively in our protocols.

3.5 Zero-knowledge proofs
Our protocols employ several standard zero-knowledge proofs

(ZKPs) from the literature: proofs of knowledge of a committed
value [53], range proofs [9] to prove that a committed value is non-
negative, proofs of knowledge of a discrete log representation of
a number [11], and proofs that a commitment opens to the prod-
uct of the openings of two other commitments [20]. We refer the
interested reader to the respective papers for more details on each
of these proofs, or to [16] for a self-contained treatment of all of
the aforementioned proofs. We also use some efficient batch proof
techniques [6,7] to achieve practicality in our protocols; the rest of
this section describes these batch proofs.

3.5.1 Proving equality of 1-out-of-r discrete logs.
We combine the batch verification techniques of Bellare et al. [6,

7] with Cramer et al.’s [24] technique for proving the disjunction
of two or more propositions to yield efficiently verifiable proofs of
equality of 1-out-of-r discrete logarithms. That is, given bases g
and h and two sets of inputs g1, g2, . . . , gr and h1, h2, . . . , hr , to
prove the predicate

∨r
i=1

(
logg (gi) = logh (hi)

)
without reveal-

ing which particular statements are true and which are false.

A detailed description of how to implement this proof is provided
in Appendix A, and it is proved secure by Bellare et al. [7, Theorem
2.2].

3.5.2 Proving that a vector of commitments opens to
a standard basis vector.

We introduce a new proof that allows one to efficiently prove that
a vector of r commitments opens to an r-dimensional standard ba-
sis vector (i.e., a length-r vector containing a single 1 and the rest
0). Our proof uses a special case of the batch proof of equality of
1-out-of-r discrete logarithms from the previous section as a sub-
routine. In particular, we use the special case in which g1 = g2 =
· · · = gr and the hi are all different, but loghγ (hi) = ai is known
to the verifier, where γ is randomly chosen by the prover and un-
known to the verifier. In our protocol, the prover actually wishes to
prove to the verifier that the vector of polynomials committed to by
a vector of polynomial commitments evaluate to a standard basis
vector at x = 0. However, modifying our approach as described
here to handle other types of commitments (e.g., Pedersen com-
mitments) is straightforward and modifying it to handle different
evaluation points is trivial.

Let ~a = 〈a1, . . . , ar〉 ∈R (Z2κ)r . The key observation behind
our approach is as follows: if ~v is a standard basis vector, then
~v · ~a = ai for some 1 ≤ i ≤ r; conversely, if ~v is not a standard
basis vector, then with high probability~v·~a 6= ai for any 1 ≤ i ≤ r.

A detailed description of how to implement this proof is provided
in Appendix B, and it is proved secure in the extended version of
this paper [36, Appendix A].

3.5.3 Batch verification of evaluations of polynomial
commitments at a common point.

In [40], Kate et al. show how to open a single polynomial com-
mitment to a set of evaluations at the same time with a single wit-
ness element, a technique they call batch opening. We flip this
proof around and show how to verify the evaluations of a set of
polynomial commitments at a single point, a technique we call batch
verification. Batch verification can be either cooperative or non-
cooperative. The cooperative form of the protocol is interactive
(though it can be made noninteractive using the Fiat-Shamir heuris-
tic [28]), and uses only a single witness element, while the nonco-
operative form is noninteractive and uses one witness element per
commitment. As the name implies, the noncooperative form of
batch verification does not require the prover’s cooperation; i.e.,
only the verifier changes. In particular, the verifier combines all of
the witnesses (and commitments) into a single witness (and com-
mitment) at verification time to significantly reduce verification
time at the cost of a negligible decrease in soundness.

A detailed description of how to implement cooperative batch
verification is provided in Appendix C, and it is proved secure in
the extended version of this paper [36, Appendix B].

4. CONSTRUCTIONS
We now describe the full details of our constructions. We de-

velop our scheme incrementally in three steps. First, we describe
how to convert Goldberg’s multi-server PIR into SPIR. We then
describe the basic single-payee PSPIR construction and show how
to extend it to support access control lists. Finally, we discuss our
approach to bookkeeping and use this to add support for top-K
replication and to construct multiple-payee PSPIR.

4.1 Symmetric PIR construction
The first step in our construction is to convert Goldberg’s PIR

scheme into SPIR; that is, we augment the scheme to enforce the

additional property that no query will ever reveal information about
more than a single record, under some mild computational assump-
tions. This property implies that no coalition of users can use
knowledge obtained from one or more PIR queries to learn any in-
formation about a record that they did not purchase in one of those
queries. We accomplish this with the aforementioned proof that a
vector of commitments opens to a standard basis vector. In particu-
lar, the user (querying servers with indices I1, . . . , Ik for the record
at index β using his current wallet, wallet) does the following:

1. chooses ~f = 〈f1, . . . , fr〉 ∈R (Zq[x])r such that deg(fi) ≤
t and fi(0) = δiβ ,

2. computes a vector ~C of component-wise PolyCommitDL

commitments to the polynomials in ~f ,

3. computes k vectors ~ρj = 〈f1(Ij), . . . , fr(Ij)〉 of evalua-
tions of the polynomials in ~f , and k witnesses wj that at-
test to the fact that the r evaluations in ~ρj are correct using
cooperative batch verification (made noninteractive via Fiat-
Shamir), for 1 ≤ j ≤ k,

4. computes the set S of commitment values from the proof that
the polynomials committed to in ~C open to a standard basis
vector at x = 0, and

5. sends (~C, S,wallet, ~ρj , wj), to server Ij for 1 ≤ j ≤ k.

Note that each server receives different vectors of evaluation points
and witnesses, but the same wallet and sets of commitments. Upon
receiving these values, each server Ij

6. ensures that it has not seen wallet in an earlier query,

7. verifies that the evaluations in ~ρj are correct using coopera-
tive batch verification (with witness wj),

8. computes a (k, `)-threshold BLS signature share σj on the
value ~C‖S‖wallet, and

9. sends σj to the user.

After receiving signature shares from each server, the user

10. combines σ1, . . . , σk into a signature σ on ~C‖S‖wallet,

11. computes the challenge c = hash(σ) and uses this challenge
to compute the set V of responses to complete the aforemen-
tioned proof that the polynomials committed to in ~C open to
a standard basis vector at x = 0, and

12. sends (σ, V) to server Ij for 1 ≤ j ≤ k.

Upon receipt of this response, each server Ij

13. verifies that σ is a valid signature on ~C‖S‖wallet, and

14. computes c = hash(σ) and checks if the responses in V are
valid responses for this challenge.

Recall that in Goldberg’s PIR scheme, the user recovers the record
by Lagrange interpolation at the point x = 0. It is apparent that
the above proof convinces the database servers that the query only
reveals information about a single record when the responses are
interpolated at the point x = 0, but we must also consider a clever
user that chooses the polynomials in his query non-randomly. In
this case, the polynomials might be chosen such that interpolat-
ing at some other point x = a reveals information about some

other database record. This is unsurprising, since it is known that
information-theoretic SPIR is impossible to achieve without some
interaction between the servers, or a shared secret among them [31].
We thus introduce a shared secret key sk, known to all the servers
but unknown to the users. (Note that the servers must already share
a copy of the database, so requiring them to share an additional
secret key is reasonable.) To prevent the above attack, server Ij

15. seeds a pseudorandom generator (PRG) withFsk(~C) for some
pseudorandom function family F ,

16. uses the PRG to generate a common pseudorandom nonce
and appends it to the database as an ephemeral (r+1)th data-
base record for this query,3

17. uses the PRG to generate t − 1 random Zq elements from
which it forms a common pseudorandom polynomial g ∈
Zq[x] of degree (at most) t with g(0) = 0,

18. computes and appends g(Ij) to ~ρj , and

19. encodes the query response exactly as in Goldberg’s original
construction. Note that when encoding the response, the ser-
vers include the ephemeral (r + 1)th record in the database,
and also include their respective evaluations of the pseudo-
random polynomial g in the query as if the user had submit-
ted it as part of his original query.

This last set of steps effectively rerandomizes the user’s query. The
user decodes the responses to his rerandomized query in the usual
way (see §3.2).

Note that this SPIR construction preserves the t-privacy and v-
Byzantine-robustness properties of the underlying PIR protocol;
however, our approach to rerandomizing user queries prevents us
from inheriting the scheme’s optional τ -independence property.

Theorem 1. The above modifications convert Goldberg’s multi-
server information-theoretic PIR into multi-server SPIR. Query pri-
vacy is provided information theoretically against up to t− 1, and
computationally against t (under the DL assumption), colluding
servers; the database’s privacy is protected computationally (un-
der the t-SDH assumption [40]).

The proof of this theorem is in the extended version of this pa-
per [36, Appendix C].

4.2 Single-payee PSPIR
Next, we extend the above SPIR construction to single-payee

PSPIR. To do this, we augment the protocol as follows. First, we
have the user compute a commitment, called a receipt, that encodes
the price of the requested record under the price tier encoded in his
wallet. The user proves in zero-knowledge that the receipt is well-
formed (i.e., that it encodes the correct price) and that the balance
in his wallet is sufficient to purchase the record at that price; once
convinced by this proof, the database servers issue a threshold BLS
signature on the user’s receipt and wallet. The user can later ex-
change his wallet and this signed receipt with the bank to retrieve
a new wallet for use in a future transaction. We also discuss how
a user can recharge the balance in his wallet, and then point out a
simple trick that enables the servers to enforce access control lists
with only a slight modification to the PSPIR protocol.

3It is important that no other values are used to seed the PRG, since
the user might otherwise replay ~C to retrieve a different nonce and
potentially leak some information about other database records.

Proving sufficient funds and computing the receipt.
To compute the receipt, the user and each database server in-

dependently compute a commitment to the price of the record en-
coded in the user’s query for each price tier. This is done by tak-
ing advantage of the homomorphic properties of polynomial com-
mitments: each party computes the T polynomial commitments
Pi =

∏r
j=1 C

pij
j for 1 ≤ i ≤ T , where pij is the j th component

of ~pi. (Recall that ~pi is the tier i price list.) Note that Pi is a com-
mitment to a polynomial fPi = ~f · ~pi whose constant coefficient is
equal to the price of record β in ~pi (i.e., fPi(0) = pπi). Next, the
user

1. chooses γ0, γ1 ∈R Zq and computes the PolyCommitPed

commitment CP = Pπ(hα)γ1 hγ0 , where π is the price tier
encoded in wallet,

2. computes a Pedersen commitment ReceiptP = g
pπβ
T hγ0T

and the witness wP = gφ(α)hγ1 where φ(x) is the quotient
upon division of fPπ (x)− fPπ (0) by x− 0,

3. computes ΠP , a ZKP of knowledge of (x1, . . . , xT , b) and
(γ0, γ1, p) such that CP = P x11 · · ·P

xT
T (hα)γ1 hγ0 (recall

that xi = δiπ), ReceiptP = gpT h
γ0
T , b − p ≥ 0, and

wallet encodes attributes x1, . . . , xT and balance b, and

4. sends the tuple (CP , wP ,ReceiptP ,ΠP) to server Ij for
1 ≤ j ≤ k.

Upon receiving these values, each server Ij

5. verifies that the proof ΠP is correct,

6. checks if e(CP , ĝ)
?
= e(wP , ĝ

α) · ReceiptP ,

7. computes a (k, `)-threshold BLS signature share ςj on the
value wallet‖ReceiptP , and

8. sends ςj to the user.

If any verification step above fails, then the servers abort imme-
diately; otherwise, the servers proceeds to process the user’s query
as usual. The user recombines the signature shares ςj , 1 ≤ j ≤ k,
to recover the signature ς on wallet‖ReceiptP .

Remark 1. To improve performance, our implementation of the
above protocols (as described in [36, Appendix D]) diverges some-
what from the above descriptions. In particular, each of the ZKPs
used in the SPIR construction are computed noninteractively using
Fiat-Shamir, and the commitments and responses from this proof
are transmitted to each server as early as possible, thus allowing
the servers to begin verification before the user completes the proof.
Then, instead of computing ReceiptP noninteractively, each ser-
ver issues a threshold BLS signature share on wallet, all com-
mon values from this proof, and all commitment values from the
proof that ReceiptP is valid; the user recombines these signa-
ture shares to produce a challenge value for this latter proof, then
transmits the recombined signature and his responses to each ser-
ver. This convinces the servers that they each saw the same wallet
and query in the earlier SPIR proof.4

4The reason we describe the protocols as above is to make the SPIR
construction secure on its own. In our implementation, the security
of the SPIR relies on successful verification of the subsequent re-
ceipt proof (which is acceptable, since the servers do not respond
to the query until they have verified both proofs).

Refreshing the wallet.
Before performing subsequent queries, the user must refresh his

wallet with the bank. To do so, the user sends the tuple of val-
ues (ς, ReceiptP , wallet) to the bank, who verifies that ς is
a valid signature on wallet‖ReceiptP . If so, the user and the
bank run the credential issuing protocol for the credential system
(see §2) that represents the wallet. At the end of this protocol, the
user has a new unlinkable (even to the bank) wallet wallet′ en-
coding the same tier as wallet and a balance equal to the price
committed to in ReceiptP subtracted from the balance encoded
in wallet. The user may similarly recharge his wallet with addi-
tional funds by first ‘purchasing’ a receipt that encodes a negative
price using, for example, a prepaid credit card. Note that in this
procedure, the bank does not learn the balance in the new or the old
wallet, or the price encoded in the receipt; in fact, the bank cannot
even distinguish between a user that is refreshing his wallet and one
who is recharging it.

Supporting access control lists.
We now describe a simple modification to implement access con-

trol lists atop our PSPIR construction. The idea is to impose a max-
imum balance bmax on users’ wallets, and then require all users to
prove that their new balance does not exceed bmax each time they re-
fresh or recharge their wallets with the bank. The bank will refuse
to issue any wallet without such a proof, thus ensuring that no user’s
balance ever exceeds bmax. The remainder of the protocol remains
unchanged, except that a price of ⊥ in ~pπ is treated as a price of
bmax + 1, which, by our restriction above, no user can afford. Thus,
this simple modification effectively prevents users in price tier π
from purchasing any record marked as ⊥ in ~pπ .

4.3 Bookkeeping
This section discusses our approach to bookkeeping. At a high

level, our idea uses the additive and multiplicative homomorphic
properties of Shamir secret shares to maintain and compute on
shares of aggregate counts of the number of times each database
record is retrieved (and at what price). In Goldberg’s original PIR
construction, the database servers do not maintain any state infor-
mation — the only information they store is the actual database
contents. We augment the database with two additional columns of
state information; i.e., we require the database servers to store two
w-bit words of state (Shamir secret shares) per database record,
which are the length-r vectors of shares ~cj = 〈[c1]q, . . . , [cr]q〉
and ~dj = 〈[d1]q, . . . , [dr]q〉.

Our initial idea was for servers to maintain a running sum of all
queries they witness between successive bookkeeping operations.
Unfortunately, this naive solution requires all servers to be involved
in all queries, since if server j aggregates a query but server j′ does
not, their shares will be inconsistent and interpolate to an unpre-
dictable value that does not reflect the actual number of queries per
record. However, requiring all servers to participate in all queries
hurts availability since the failure of a single database server would
render the system inoperable. (It also hurts efficiency by requiring
additional bandwidth and computational power be devoted to each
query.) Moreover, even if all servers aggregate all queries, this only
enables them to track the number of times each record is retrieved,
but not the prices paid for them. We solve the first problem by hav-
ing the user reveal which subset Q of database servers are involved
in each query, and then use this knowledge to convert the Shamir
secret shares into additive shares; therefore, all servers must be on-
line to compute on the shared bookkeeping data, but they do not
need to be online during every query. To solve the second prob-
lem, we have the user (querying for record β under price tier π)

include the additional vector of shares ~%j of (pπβ · ~1β) along with
his query.5 The servers convert both vectors into additive shares and
aggregate them into ~cj and ~dj , which are then vectors of shares of
the number of times each record was retrieved, and the total price
paid for those retrievals, respectively.

After each bookkeeping operation, database server j reinitial-
izes the auxiliary vectors ~cj and ~dj back to the length-r zero vec-
tor, chooses a new private signing key xj for BLS signature gen-
eration, and publishes the corresponding verification key (ĝ, ĝxj).
By having each server choose its signing key independently, every
subset Q of k servers has a unique public verification key pkQ for
(k, k)-threshold BLS signatures; this key is easily computable us-
ing Q via the expression pkQ =

∏
Ij∈Q

(
ĝ
xIj
)λQ,j mod q where

λQ,j =
∏
Ii∈Q−{Ij} Ij · (Ij − Ii)

−1 mod q. Users then reveal Q
during each query, and the servers append an unambiguous string
representation of Q to the message resulting in the signature σ.
The servers accept the signature as valid if and only if verification
succeeds using verification key pkQ, where Q is the set of servers
encoded in the message. Similarly, the servers encode Q into the
signature ς on the user’s receipt, and the user transmits Q along
with the receipt to the bank.

This ensures that each server involved in a query sees a consistent
set Q of other servers; however, a malicious user may still disrupt
the bookkeeping process by neglecting to send the tuple (σ, V) to
any nontrivial subset ofQ on Step 12 of the SPIR protocol. The ser-
vers that do receive (σ, V) will aggregate the user’s query into ~cj
and ~dj , while those that do not will not (thus resulting in inconsis-
tent shares among the servers in Q). We therefore rely on the bank
to facilitate atomicity to the query aggregation process. Instead of
returning the regular query response ~ρj ·D, the servers use the PRG
(seeded with their shared secret and the user’s wallet) to produce a
common Zq element for blinding, Γ, and return ~ρj ·D + Γ. When
the user sends (ς,Q,wallet,ReceiptP) to the bank, the bank
1) verifies that ς is a valid signature on wallet‖ReceiptP ‖Q
using pkQ, 2) computes and sends Γ to the user, and 3) notifies each
server in Q that the transaction involving wallet is complete. At
this point, all servers can safely update their aggregate shares.

Top-K replication.
Given the above modifications, supporting top-K replication is

straightforward. When a query (~C, S,wallet, ~ρj , wj , Q) arrives
at server Ij , it temporarily stores ~ρj . Upon notification of the
query’s success from the bank, server Ij accumulates the query
by computing ~cj = ~cj + λQ,j · ~ρj . Computing the top-K records
from these shares is then a straightforward application of Burkhart
and Dimitropoulos’ [14] privacy-preserving top-K (PPTK) algo-
rithm. The algorithm outputs the top-K largest shares in ~cj without
revealing any additional information about the value of any share.
After the topK are revealed, the servers replicate these to a smaller
database and reinitialize ~cj to the length-r zero vector.

Multiple-payee PSPIR.
Supporting multiple payees in the tiered pricing model is slightly

more involved than is supporting top-K replication. Due to space
constraints, we only address the simpler case of a single-tiered pric-
ing scheme, and then briefly outline how to extend this approach to
a system with multiple price tiers (and access control lists). Full de-
5Note that ~%j 6= pπβ · ~ρj mod q, which would reveal the price
pπp to the servers; rather, ~%j is an independently chosen vector of
shares. Of course, ~%j − pπβ · ~ρj yields shares of the length-r zero
vector, which is the property we exploit to let the user prove the
well-formedness of ~%j .

tails of the more general construction are available in the extended
version of this paper [36].

The single-tier case simplifies the construction in two impor-
tant ways: first, the user need not send or prove statements about
the additional vector of shares ~%j as above and, second, the ser-
vers only need to store a single additional column of auxiliary in-
formation. Consider the above PSPIR construction with a sin-
gle price list ~p = 〈p1, . . . , pr〉 for all users, and a set of m CPs
CP = {CP1, . . . ,CPm}. For ease of presentation, we define
r1 = 0 and rm+1 = r, and assume that CPi (1 ≤ i ≤ m)
owns the records at indices ri + 1 through ri+1. The amount
payable to CPi is then computed by summing the additive shares∑ri+1

i=ri+1 pi · [ci]q .
With tiered pricing, the computation is conceptually similar but

requires cooperation from the user. The user sends the vector of
shares ~%j described above along with his query. The server chooses
a random length-r vector of challenges~c ∈ (Zq)r (via Fiat-Shamir)
and computes the T dot products [ei]q = (~%j − ~pi � ~ρj) ·~c, where
� denotes component-wise multiplication of two vectors, for 1 ≤
i ≤ T . If ~%j is well-formed, then [ei]q = [0]q for i = π; otherwise,
[ei]q 6= [0]q for any 1 ≤ i ≤ T with overwhelming probability.
The user then proves that [ei]q = [0]q for i = π using a proof
similar to the existing proof of correctness for the receipt. Once
convinced, server j is convinced that ~%j is a vector of commitments
to the correct price, and can safely aggregate ~%j into ~dj .

Bookkeeping frequency.
Bookkeeping necessarily leaks some information about user que-

ries. In the extreme case, where only a single user queries the
database between bookkeeping operations, bookkeeping may com-
pletely reveal that user’s query. At the other end of the spectrum,
when every record is accessed hundreds or thousands of times be-
tween bookkeeping operations, the information leakage is minimal
and likely not at all invasive to any user’s privacy. However, pro-
longing the period between bookkeeping limits its usefulness in the
case of top-K replication, and may be economically unacceptable in
the case of multiple-payee PSPIR. Thus, a great deal of discretion
is necessary on the part of the database servers in determining how
often to run the bookkeeping protocols. For databases with con-
sistently high usage, a simple bookkeeping schedule such as once
per week or once per month may suffice, whereas those databases
with lower usage may need to wait until the servers answer some
threshold number of queries. In general, the bookkeeping policy is
highly dependent both on the characteristics of the database and the
business logic of its operators. We leave an in-depth investigation
of this privacy-utility tradeoff as an important area for future work.

5. IMPLEMENTATION & EVALUATION
We implemented the protocols described in this paper using Ben

Lynn’s Pairing-Based Cryptography (PBC) [43] library with Aniket
Kate’s PBCWrapper [39] package for C++ Wrapper classes, Vic-
tor Shoup’s NTL [55] with the GNU Multi-Precision Arithmetic
Library [29] for multi-precision arithmetic, and OpenSSL [50] for
hash functions (we use SHA-256). All experiments use a value of
κ = 40 for the soundness parameter. Our PSPIR implementation
is built atop Ian Goldberg’s implementation of his PIR protocols,
Percy++ [32]. For our evaluation, we implemented the protocol as
a standalone add-on to Percy++, but we will later integrate it with
the Percy++ library. We used the BigInteger-based version of Mar-
tin Burkhart’s SEPIA library [13] and his PPTK [14] protocol for
our top-K replication benchmarks. All measurements were taken
in Ubuntu Linux 10.04.1 LTS running on a machine with Dual Intel

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45

C
o

m
p

u
te

 t
im

e
(s

)

Database size (GB)

Percy++ vs. Percy++ w/ PSPIR

Percy++ with PSPIR (w = 160)
Percy++ only (w = 160)

Percy++ only (w = 8)

Figure 1: Query execution time for Percy++ with and without PSPIR (k = 4, t = 2). The percent compute time attributable to the PSPIR
enhancements decreases monotonically from ≈ 86% for a 1 GB database down to ≈ 33% for a 44 GB database. Percy++ starts carrying the extra
overhead of disk reads after a 28 GB database, which exceeds available RAM. The w = 8 plot shows the execution time for Percy++ using its
performance-optimal parameter choices, whereas the w = 160 plot shows Percy++ with parameters needed to ensure the security of PSPIR. The
Percy++ with PSPIR plot shows the combined cost of Percy++ with w = 160 and the PSPIR enhancements. Error bars are plotted for all data
points, but are small and may therefore be difficult to see. For comparison, downloading a 44 GB database in OT-based schemes takes over 11 hours
at 9 Mbps, which is the average Internet bandwidth in Canada and the US [49].

Xeon E5420 2.50 GHz CPUs and 32 GB memory. The value of q
(the order of the pairing groups and the modulus for the polynomial
operations) was 160 bits long.

5.1 Experiments
We measured the performance of the PSPIR and top-K replica-

tion protocols for various values of the PIR parameters n (the size
of the database), b (the size of each record in the database), k (the
number of servers participating in each query), and t (the number
of servers that can collude without affecting query privacy).

Experiment 1. Our first experiment measures the computational
overhead added to Percy++ by the PSPIR enhancements. We gen-
erated databases of sizes ranging from 1 GB to 44 GB contain-
ing random data and took measurements for both Percy++ and the
Percy++ with PSPIR.

In Figure 1, we plot the results for parameters k = 4, t = 2, and
b =
√

160n, which is the communication-optimal record size for
this PIR scheme. We observe that PSPIR results in a moderate in-
crease in compute times, with the percent compute time attributable
to the PSPIR enhancements decreasing monotonically from about
86% for a 1 GB database down to just 33% for a 44 GB database.
The upward bump just before 30 GB marks the point after which
the database no longer fits in available memory. From that point
on, every query bears more overhead from disk reads. In terms of
communication overhead, PSPIR increases Percy++’s query size,
which is itself just k times the size of the retrieved record, by a
multiplicative factor of about 5. However, it increases each server’s
response by only 46 bytes, which corresponds to two G1 elements
(BLS signature shares).

The PSPIR compute time scales linearly with k and r = n/b.
In our implementation, the cost is independent of t except for a
one-time preprocessing step at the client. (The size of the long-
term polynomial commitment public key and Percy++’s client-side
compute time are also linear in t. This latter cost consistently ac-
counted for less than one percent of overall compute time in our
experiments.) The bottleneck operation for the client is comput-
ing commitments, while for the server it is processing the actual
PIR query. In both cases, the bottleneck operation increases with
r. Top-K replication or bucketization [47] can enable one to trade

some privacy to support larger values of r with little to no addi-
tional compute time or communication overhead.

Experiment 2. Our next experiment evaluates the impact of top-
K replication; i.e., it studies the performance gains for the users
when all queries for the K most popular records go to the smaller
replicated database. In this experiment, we assume that all records
are physically replicated to a second set of database servers, thus
increasing the maximum database size for which both the top-K
and non-top-K records fit in physical memory. Alternatively, the
database servers could simply publish a list of indices for the top-
K records and allow users to perform PIR on just this subset of
the database; this would result in identical performance when the
entire database fits in physical memory and somewhat lower per-
formance otherwise. All trials of the top-K experiment used a
query distribution that we generated at random using a bounded
Pareto distribution that satisfies the 80/20 rule; i.e., about 80% of
queries are for just 20% of the database records, with the number
of queries per record bounded between 0 and 10,000. As such, we
use K = br/5c. We chose an 80/20 distribution because such dis-
tributions are commonly observed in the wild, but we emphasize
that the actual performance gains that a database can expect from
top-K replication is highly dependent on the underlying query dis-
tribution. Figure 2 plots the mean query execution time for top-K
and non-top-K queries, as well as the average (amortized) cost per
query when 80% of queries are top-K queries and 20% are not.
Note that the average query execution time is well below that of
Percy++ without PSPIR functionality (cf. Figure 1).

We also measured the cost to the servers of actually computing
the top-K using the SEPIA library. We found that using 160-bit
secret shares results in poor performance compared to the bench-
marks presented by Burkhart et al. [15]. Fortunately, in our case
we can assert that all shared secrets are much smaller than q/2,
which enables us to eliminate two-thirds of the computation in the
bottleneck ‘less than’ computation. Furthermore, about 86% of the
remaining computation time is spent generating random bit-wise
secret shares modulo q. These random shares can be precomputed
between top-K computations, resulting in a respectable 57 less-
than operations per second in our tests. This still leads to signifi-
cant computation times to isolate the top-K using Burkhart et al.’s
PPTK algorithm [14] when the database size is large; thus, we fur-

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45

C
o

m
p

u
te

 t
im

e
(s

)

Database size (GB)

Impact of Top-K Replication

Non-Top-K query
Average query

Top-K query

Figure 2: Query execution time for Percy++ with PSPIR and top-K replication (k = 4, t = 2, K = br/5c). Queries follow a bounded Pareto
distribution that satisfies the 80/20 rule; thus, 80% of queries are for the top-K entries and 20% are for the remaining r −K entries (labelled ‘Non-
Top-K’ on the plot). The average query cost for the top-K replicated database ranges from just 51% that of an equivalent non-replicated database
for a 1 GB database down to 36% for a 44 GB database. Error bars are plotted for all data points, but are small and may therefore be difficult to see.

ther optimize the algorithm by relaxing PPTK to a ‘top-K-ish’ al-
gorithm. This reduces computation times quite significantly. For
example, with a 1 GB database (r = 7328 records) and a bounded
80/20 Pareto distribution our modified PPTK takes an average of
about 9700 comparisons (≈ 2.8 minutes) to find the top 19–21%
of records, whereas standard PPTK takes about 14600 comparisons
(≈ 4.2 minutes); for a 20 GB database (r = 32768 records) this
figure is about 33500 comparisons (≈ 11.0 minutes) for our relaxed
PPTK versus 137500 comparisons (≈ 40.2 minutes) for standard
PPTK, and for a 44 GB database (r = 48603 records) it is about
48605 comparisons (≈ 14.2 minutes) for our relaxed PPTK versus
197500 comparisons (≈ 57.7 minutes) for standard PPTK. More-
over, a large fraction of trials with standard PPTK had no solution
(i.e., no unique top-K) and the algorithm therefore returned only
the top-K-ish anyhow. Note that we generated our test sets using
a bounded 80/20 Pareto distribution and then used the CDF for this
distribution as an ‘initial guess’ in the PPTK algorithm. In prac-
tice, such an accurate guess will typically not be available and the
actual number of comparisons will be greater than our predictions.
Nonetheless, we feel confident in concluding that even for large
databases with imperfect knowledge of the underlying query distri-
bution, the cost of computing the top-K will be quite reasonable.

6. RELATED WORK
The related bodies of work are symmetric private information

retrieval (SPIR), oblivious transfer (OT), OT with access control
(OTAC), and priced OT (POT).

OT schemes allow a database X consisting of two records and
a user holding an index i ∈ {0, 1} to run a protocol that results
in the user learning the ith record and no information the (1 − i)th

record, while the database learns nothing about i. Unlike PIR and
SPIR, however, OT schemes have no sublinear communication re-
quirements. Brassard et al. [12] considered the more general notion
of 1-out-of-n OT, where the database holds n records and the user
learns the record at index i, and learns nothing about the remaining
n− 1 records [51]; the database still learns nothing about i.

SPIR schemes [31] address the honest-user assumption of PIR
by additionally preserving database privacy so that dishonest users
cannot learn any information about other database records beyond
the record retrieved. All existing communication-efficient 1-out-of-
n OT schemes are essentially single-server SPIR, whereas all ex-
isting communication-efficient distributed OT schemes [31] (i.e.,

two or more servers) of 1-out-of-n OT schemes are essentially
multi-server SPIR. The first work on preserving database privacy
against dishonest users in a multi-server PIR setting was by Gert-
ner et al. [31]. They propose a single-round `-server SPIR scheme
with communication complexity O(log n · n1/(2`−1)) for ` ≥ 2
and a O(log n)-server scheme with communication complexity
O(log2 n · log log n). Kushilevitz and Ostrovsky [42] briefly dis-
cuss how to convert their single-server PIR into SPIR using general
zero-knowledge proof techniques, however they propose no con-
crete constructions. No existing SPIR scheme simultaneously pro-
vides support for both access control and tiered pricing.

Several OTAC schemes [17, 23, 57] were recently proposed. As
with our approach, these schemes typically consist of three parties:
user, database, and issuer. The issuer provides users needing ac-
cess to the database with credentials encoding the access rights of
users as an attribute set. The database encrypts its content under
an access policy specific to each record and makes the encrypted
contents available to users for download. A user with a valid cre-
dential can run the OTAC protocol with the database to obtain a
decryption key for a particular record. After the protocol, the data-
base learns that a user with a valid credential has obtained a key,
but learns nothing about the user’s credential or the decryption key
issued. User’s download the entire encrypted database and use the
key obtained to decrypt the desired record. Zhang et al. [57] used
attribute-based encryption to specify record-level access policies in
disjunctive form without requiring duplication of database records.
However, these schemes do not consider an economic model where
users pay for each record and their high communication overhead
makes them considerably more costly than SPIR.

POT schemes [1, 18] were originally introduced by Aiello et
al. [1] to explore the difference between physical goods requiring
close monitoring of inventory level and digital goods that are essen-
tially of unlimited supply. In their model, users first deposit some
money with the database and then proceed to buy multiple digi-
tal goods from the database, such that the total price of purchased
goods does not exceed the user’s deposit/balance. The database
does not learn which digital goods the user has purchased. How-
ever, since the database tracks the users’ accounts, all queries by
a single user are linkable; thus, the approach lacks the anonymity
properties that we seek. This enables the database server to de-
duce the number of digital goods a particular user has purchased,
the average price of those purchases, and the user’s spending pat-
tern [18]. Furthermore, the scheme provides no way for users to

recharge their balance, which means that when a user’s balance be-
comes lower than the price of any record, the remaining balance
is rendered useless. Camenisch et al. [18] address these problems
by encoding users’ wallets in an anonymous credential so that the
database is no longer required to maintain user-specific state infor-
mation; as a result, user purchases become unlinkable. They also
lay out an extension that makes use of a trusted third party to fa-
cilitate a fair purchase protocol; i.e., an optimistic fair exchange
protocol to prevent the database server from cheating by not send-
ing the correct decryption key (or wallet) to the user.

All of the above priced and access-control-capable OT and SPIR
schemes lack some ingredients necessary for deployment in a prac-
tical setting. The foremost missing ingredient is the right combina-
tion of functionalities for access control, tiered pricing, support for
multiple payees, sublinear communication complexity, and avail-
ability of practical implementations. The SPIR schemes [31, 42]
provide no pricing or access control functions. OT schemes (i.e.,
1-out-of-n) have prohibitively expensive communication costs and
require a static encrypted database, which potentially breaks other
applications using the same database. In particular, existing OTAC
schemes [17, 23, 57] do not provide pricing functions, while the
POT schemes [1, 18], on the other hand, provide no access control
functions. Note that one cannot simply adopt our approach of set-
ting the price of a record higher than the maximum wallet balance,
since all users in these schemes pay according to the same price list
(and thus would automatically have the same access privileges).
Moreover, no existing POT scheme supports multiple payees sell-
ing goods through a common database.

Much like our top-K replication strategy, a few research efforts
have also focused on increasing the practicality of PIR by find-
ing ways around PIR’s linear computational requirements. Beimel
et al. [5] propose preprocessing, which enables PIR servers to an-
swer queries with only sublinear computation by precomputing and
storing some extra information (the size of which is polynomial in
the database size n). Ishai et al. [37] propose a different approach
called batch coding that — while still requiring linear computation
— enables the servers to process several PIR queries by the same
user simultaneously, thus providing an amortized cost per query
that is strictly smaller than n. Nearest to our own work, Olumofin
and Goldberg [47] recently proposed an approach to indexing and
partitioning large databases into highly diverse bucket portions that
users can query independently. This approach makes querying such
large databases with PIR practical, and simplifies the tradeoff be-
tween privacy and runtime; however, it does not include any way
for the database servers to dynamically learn about and exploit the
relative popularities of individual records to improve performance,
as does the top-K approach taken in this work.

7. CONCLUSION
We have extended Goldberg’s multi-server information-theoretic

PIR with a suite of protocols for privacy-preserving e-commerce.
Our protocols add support for tiered pricing with multiple payees,
group-based access control lists with record-level granularity, and
dynamic top-K replication, while preserving the sublinear com-
munication complexity of PIR; no other scheme for priced retrieval
using PIR or OT supports tiered pricing, multiple payees, access
control, or dynamic replication. We have implemented the single-
payee variant of our PSPIR protocol atop Percy++, an open-source
implementation of Goldberg’s PIR scheme, and evaluated its per-
formance empirically. We also evaluated the cost and impact of
top-K replication. Our measurements indicate that this combina-
tion of protocols results in performance that is acceptable for de-
ployment in real-world e-commerce applications. Furthermore, the

extensive functionality of our protocols, SPIR’s sublinear commu-
nication costs, and the ability to operate on an unencrypted data-
base, makes our approach more practical than competing OT-based
approaches. For future work, we intend to optimize our implemen-
tation and add full support for multiple payees (which we do not
expect to significantly alter the runtime), and to incorporate our
protocols into Percy++.
Acknowledgements. We are extremely thankful to Martin Burk-
hart for his assistance with SEPIA. This research is supported by
NSERC, OGS, Mprime, and a Cheriton Graduate Scholarship.

REFERENCES
[1] W. Aiello, Y. Ishai, and O. Reingold. Priced Oblivious Trans-

fer: How to Sell Digital Goods. In Proceedings of EURO-
CRYPT 2001, Innsbruck, Austria, May 2001.

[2] D. Asonov. Querying Databases Privately: A New Approach
To Private Information Retrieval, volume 3128 of LNCS.
Springer, 2004.

[3] M. H. Au, W. Susilo, and Y. Mu. Constant-Size Dynamic k-
TAA. In Proceedings of SCN 2006, Maiori, Italy, September
2006.

[4] J. Bar-Ilan and D. Beaver. Non-Cryptographic Fault-Tolerant
Computing in Constant Number of Rounds of Interaction. In
Proceedings of PODC 1989, Edmonton, AB, August 1989.

[5] A. Beimel, Y. Ishai, and T. Malkin. Reducing the Servers’
Computation in Private Information Retrieval: PIR with Pre-
processing. In Proceedings of CRYPTO 2000, Santa Barbara,
CA, August 2000.

[6] M. Bellare, J. A. Garay, and T. Rabin. Batch Verification with
Applications to Cryptography and Checking. In Proceedings
of LATIN 1998, Campinas, Brazil, April 1998.

[7] M. Bellare, J. A. Garay, and T. Rabin. Fast Batch Verification
for Modular Exponentiation and Digital Signatures. In Pro-
ceedings of EUROCRYPT 1998, Espoo, Finland, May 1998.

[8] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from
the Weil Pairing. Journal of Cryptology, 17(4):297–319, Jan-
uary 2004.

[9] F. Boudot. Efficient Proofs that a Committed Number Lies in
an Interval. In Proceedings of EUROCRYPT 2000, Bruges,
Belgium, May 2000.

[10] S. Brands. Restrictive Blinding of Secret-Key Certificates. In
Proceedings of EUROCRYPT 1995, Saint-Malo, France, May
1995.

[11] S. A. Brands. Rethinking Public Key Infrastructures and Dig-
ital Certificates: Building in Privacy. MIT Press, 2000.

[12] G. Brassard, C. Crépeau, and J.-M. Robert. All-or-Nothing
Disclosure of Secrets. In Proceedings of CRYPTO 1986,
Santa Barbara, CA, 1986.

[13] M. Burkhart. SEPIA: Security through Private Information
Aggregation. Version 0.8.2.

[14] M. Burkhart and X. Dimitropoulos. Fast Privacy-Preserving
Top-k Queries using Secret Sharing. In Proceedings of IC-
CCN 2010, Zurich, Switzerland, August 2010.

[15] M. Burkhart, M. Strasser, D. Many, and X. A. Dimitropoulos.
SEPIA: Privacy-Preserving Aggregation of Multi-Domain
Network Events and Statistics. In Proceedings of USENIX
Security 2010, Washington, DC, August 2010.

[16] J. Camenisch. Group Signature Schemes and Payment Sys-
tems Based on the Discrete Logarithm Problem. PhD thesis,
ETH Zurich, 1998. Reprint as vol. 2 of ETH Series in In-
formation Security and Cryptography, Hartung-Gorre Verlag,
Konstanz, 1998.

[17] J. Camenisch, M. Dubovitskaya, and G. Neven. Oblivious
Transfer with Access Control. In Proceedings of ACM CCS
2009, Chicago, IL, November 2009.

[18] J. Camenisch, M. Dubovitskaya, and G. Neven. Unlinkable
Priced Oblivious Transfer with Rechargeable Wallets. In Pro-
ceedings of FC 2010, Tenerife, Canary Islands, January 2010.

[19] J. Camenisch, M. Dubovitskaya, G. Neven, and G. M. Za-
verucha. Oblivious Transfer with Hidden Access Control
Lists. In Proceedings of PKC 2011, Taormina, Italy, March
2011.

[20] J. Camenisch and M. Michels. Proving in Zero-Knowledge
that a Number Is the Product of Two Safe Primes. In Proceed-
ings of EUROCRYPT 1999, Prague, Czech Republic, May
1999.

[21] B. Chor, N. Gilboa, and M. Naor. Private Information Re-
trieval by Keywords. Cryptology ePrint Archive, Report
1998/003, 1998. http://eprint.iacr.org/.

[22] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Pri-
vate Information Retrieval. In Proceedings of FOCS 1995,
Milwaukee, WI, October 1995.

[23] S. E. Coull, M. Green, and S. Hohenberger. Controlling Ac-
cess to an Oblivious Database Using Stateful Anonymous
Credentials. In Proceedings of PKC 2009, Irvine, CA, March
2009.

[24] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of Par-
tial Knowledge and Simplified Design of Witness Hiding Pro-
tocols. In Proceedings of CRYPTO 1994, Santa Barbara, CA,
August 1994.

[25] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Un-
conditionally Secure Constant-Rounds Multi-party Computa-
tion for Equality, Comparison, Bits and Exponentiation. In
Proceedings of TCC 2006, New York, NY, March 2006.

[26] B. Doe. The Kindle in Australia, October 2009.
[27] P. Feldman. A Practical Scheme for Non-interactive Verifi-

able Secret Sharing. In Proceedings of FOCS 1987, Los An-
geles, CA, October 1987.

[28] A. Fiat and A. Shamir. How to Prove Yourself: Practical So-
lutions to Identification and Signature Problems. In Proceed-
ings of CRYPTO 1986, Santa Barbara, CA, 1986.

[29] Free Software Foundation. The GNU Multiple Precision
(GMP) Arithmetic Library. Version 5.0.1.

[30] Y. Gertner, S. Goldwasser, and T. Malkin. A Random Server
Model for Private Information Retrieval. In Proceedings of
RANDOM 1998, Barcelona, Spain, October 1998.

[31] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting
Data Privacy in Private Information Retrieval Schemes. In
Proceedings of STOC 1998, Dallas, TX, May 1998.

[32] I. Goldberg. Percy++ / PIR in C++. Version 0.7.1.
[33] I. Goldberg. Improving the Robustness of Private Information

Retrieval. In Proceedings of IEEE S&P 2007, Oakland, CA,
May 2007.

[34] S. Guha, B. Cheng, and P. Francis. Privad: Practical Privacy
in Online Advertising. In Proceedings of NSDI 2011, Boston,
MA, March 2011.

[35] V. Guruswami and M. Sudan. Improved Decoding of Reed-
Solomon and Algebraic-Geometric Codes. In Proceedings of
FOCS 1998, Palo Alto, CA, November 1998.

[36] R. Henry, F. Olumofin, and I. Goldberg. Practical PIR for
Electronic Commerce. Tech. Report CACR 2011-04, Univer-
sity of Waterloo, 2011.

[37] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Batch
Codes and Their Applications. In Proceedings of STOC 2004,
Chicago, IL, June 2004.

[38] A. Juels. Targeted Advertising. . . And Privacy Too. In CT-
RSA, San Francisco, CA, April 2001.

[39] A. Kate. PBCWrapper: C++ Wrapper Classes for the Pairing-
Based Cryptography Library. Version 0.8.0.

[40] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-Size
Commitments to Polynomials and Their Applications. In Pro-
ceedings of ASIACRYPT 2010, Singapore, December 2010.

[41] A. Kate, G. M. Zaverucha, and I. Goldberg. Polynomial Com-
mitments. Tech. Report CACR 2010-10, University of Water-
loo, 2010.

[42] E. Kushilevitz and R. Ostrovsky. Replication Is Not Needed:
Single Database, Computationally-Private Information Re-
trieval. In Proceedings of FOCS 1997, Miami Beach, FL,
October 1997.

[43] B. Lynn. PBC Library: The Pairing-Based Cryptography Li-
brary. Version 0.5.11.

[44] D. McCullagh. Amazon Fights Demand for Customer
Records. In CNET News. April 2010. http://news.
cnet.com/8301-13578_3-20002870-38.html.

[45] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 2001.

[46] T. Nishide and K. Ohta. Constant-Round Multiparty Compu-
tation for Interval Test, Equality Test, and Comparison. IE-
ICE Transactions, 90-A(5):960–968, 2007.

[47] F. Olumofin and I. Goldberg. Preserving Access Privacy Over
Large Databases. Tech. Report CACR 2010-33, University of
Waterloo, 2010.

[48] F. G. Olumofin and I. Goldberg. Privacy-Preserving Queries
over Relational Databases. In Privacy Enhancing Technolo-
gies, Berlin, Germany, July 2010.

[49] Ookla Net Metrics. Canada and US Source Data. http:
//www.netindex.com/source-data/.

[50] OpenSSL Project. OpenSSL: The Open Source toolkit for
SSL/TLS. Version 1.0.0.

[51] R. Ostrovsky and W. E. Skeith III. A Survey of Single-
Database Private Information Retrieval: Techniques and Ap-
plications. In Proceedings of PKC 2007, Beijing, China, April
2007.

[52] T. P. Pedersen. Non-Interactive and Information-Theoretic
Secure Verifiable Secret Sharing. In Proceedings of CRYPTO
1991, Santa Barbara, CA, August 1991.

[53] C.-P. Schnorr. Efficient Identification and Signatures for
Smart Cards. In Proceedings of CRYPTO 1989, Santa Bar-
bara, CA, August 1989.

[54] A. Shamir. How to Share a Secret. Communications of the
ACM, 22(11):612–613, November 1979.

[55] V. Shoup. NTL: A Library for doing Number Theory. Version
5.5.2.

[56] V. Toubiana, H. Nissenbaum, A. Narayanan, S. Barocas, and
D. Boneh. Adnostic: Privacy Preserving Targeted Advertis-
ing. In Proceedings of NDSS 2010, San Diego, CA, February
2010.

[57] Y. Zhang, M. H. Au, D. S. Wong, Q. Huang, N. Mamoulis,
D. W. Cheung, and S.-M. Yiu. Oblivious Transfer with Ac-
cess Control : Realizing Disjunction without Duplication. In
Proceedings of Pairing 2010, Yamanaka Hot Spring, Japan,
December 2010.

APPENDIX
A. PROVING EQUALITY OF 1-OUT-OF-r

DISCRETE LOGARITHMS
Let g and h be (known) generators of a group G (of order q)

with logg(h) unknown to the verifier, and let g1, g2, . . . , gr and
h1, h2, . . . , hr be given. The proof works as follows:
Prover knows: x = logg gj = logh hj and index j
Verifier learns: that logg gj′ = logh hj′ for at least one j′

1. The prover chooses γ1, . . . , γr ∈R Zq and c′1, . . . , c′r ∈ Z2κ ,

then computes and sends the commitments ηi = gγig
c′iδ̄ij
i

and ζi = hγih
c′iδ̄ij
i to the verifier, for 1 ≤ i ≤ r.

2. The verifier chooses and sends c ∈R Z2κ to the prover.

3. The prover sets ci = c′i and υi = γi for i ∈ [1, r] − {j}
and computes cj = c −

∑r
i=1 c

′
iδ̄ij mod 2κ and υj = γj −

cjx mod q, then sends the pair (~c, ~υ) to the verifier, where
~c = 〈c1, . . . , cr〉 and ~υ = 〈υ1, . . . , υr〉.

4. The verifier chooses ~b = 〈b1, . . . , br〉 ∈R (Z2κ)r and com-

putes υ = ~υ ·~b. The verifier accepts if and only if
∏r
i=1 η

bi
i

?
=

http://eprint.iacr.org/
http://news.cnet.com/8301-13578_3-20002870-38.html
http://news.cnet.com/8301-13578_3-20002870-38.html
http://www.netindex.com/source-data/
http://www.netindex.com/source-data/

gυ
(∏r

i=1 g
bici
i

)
,
∏r
i=1 ζ

bi
i

?
= hυ

(∏r
i=1 h

bici
i

)
and c

?≡∑r
i=1 ci mod 2κ all hold.

Note that the above batch verification equation is more efficient
than checking each of the r verification equations independently,
since both bi and ci are short exponents; moreover, in our own
application (see §3.5.2), we take advantage of some properties of
the special case we are proving to further reduce verification costs.

B. PROVING THAT A VECTOR OF COM-
MITMENTS OPENS TO A STANDARD
BASIS VECTOR

Prover knows: a length-r vector of polynomials ~f ∈ (Zq[x])r

Verifier learns: a length-r vector ~C of component-wise commit-
ments to polynomials in ~f and that ~f evaluates component-wise to
a standard basis vector at x = 0

1. The prover computes and sends ~C to the verifier.

2. The verifier chooses a vector of challenges ~a ∈R (Z2κ)r

and sends it to the prover; meanwhile, the verifier computes
Ca =

∏r
i=1 C

ai
i , where Ci and ai are the ith components of

~C and ~a, respectively. Note that Ca is a commitment to the
dot product fa = ~f · ~a.

3. The prover computes the dot product fa = ~f · ~a and engages
in a zero-knowledge proof of knowledge of the evaluation of
fa at x = 0 with the verifier, such as by using the technique
described in [41, Appendix D].

4. Let Y = gγ·yT be the (blinded) commitment to y = fa(0)
from this last proof of knowledge. The prover sends ν = hγ

together with proof that γ is the same randomness used to
blind Y , and engages in a batch proof of equality of 1-out-of-
r discrete logarithms to prove

∨r
i=1

(
loggT

Y = logh ν
ai
)
.

Remark 2. Because we are dealing with the special case of the
batch proof of equality of 1-out-of-r discrete logarithms in which
g1 = g2 = · · · = gr = Y and logν(hi) = ai is known to the
verifier, the following optimizations apply: instead of checking

r∏
i=1

ηdii
?
= gυ

(
r∏
i=1

gcidii

)
and

r∏
i=1

ζdii
?
= hυ

(
r∏
i=1

hcidii

)

in the verification equation, the verifier computesw1 = ~c· ~d mod q
and w2 =

∑r
i=1 aicidi mod q and checks if

r∏
i=1

ηdii
?
= gυY w1 and

r∏
i=1

ζdii
?
= hυνw2 .

This reduces the cost of verification from 2 full length exponen-
tiations and 6r ‘short’ exponentiations (i.e., exponentiations with
κ-bit exponents) to 4 full length exponentiations and 2r short ex-
ponentiations.

C. VERIFYING EVALUATIONS OF POLY-
NOMIAL COMMITMENTS AT A COM-
MON POINT

Prover knows: a length-r vector of polynomials ~f ∈ (Zq[x])r

Verifier learns: a length-r vector ~C of component-wise commit-
ments to polynomials in ~f , a component-wise evaluation ~ρ of ~f at
x = x0, and the evaluation point x0

1. The prover computes and sends ~C and ~ρ to the verifier.

2. The verifier chooses ~a = 〈a1, . . . , ar〉 ∈R (Z2κ)r and sends
it to the prover; meanwhile, the verifier computes the dot
product ρa = ~ρ · ~a and the commitment Ca =

∏r
i=1 C

ai
i .

3. The prover computes the dot product fa = ~f · ~a and the wit-
ness wa = CreateWitness (fa, x0), then sends wa to the
verifier.

4. The verifier checks if Ver (Ca, x0, ρa, wa)
?
= true.

The noninteractive form of batch verification works similarly,
except the prover computes and sends a vector of witnesses to the
verifier (one for each polynomial commitment), and the verifier
combines the witnesses locally by computing wa =

∏r
i=1 w

ai
i ; in

particular, the vector ~a is local to the verifier and the prover never
sees it.

	Introduction
	System model
	Design goals
	Threat model
	A hypothetical use case

	Building blocks
	Shamir secret sharing
	Goldberg's PIR scheme
	Threshold BLS signatures
	Polynomial commitments
	Zero-knowledge proofs
	Proving equality of 1-out-of-r discrete logs
	Proving that a vector of commitments opens to a standard basis vector
	Batch verification of evaluations of polynomial commitments at a common point

	Constructions
	Symmetric PIR construction
	Single-payee PSPIR
	Bookkeeping

	Implementation & evaluation
	Experiments

	Related work
	Conclusion
	Proving equality of 1-out-of-r discrete logarithms
	Proving that a vector of commitments opens to a standard basis vector
	Verifying evaluations of polynomial commitments at a common point

