
Weaving a Faster Tor: A Multi-Threaded Relay Architecture for
Improved Throughput

Steven Engler∗
Georgetown University
Washington DC, USA

steven.engler@georgetown.edu

Ian Goldberg
University of Waterloo

Waterloo, Canada
iang@uwaterloo.ca

ABSTRACT

The Tor anonymity network has millions of daily users and thou-
sands of volunteer-run relays. Increasing the number of Tor users
will enhance the privacy of not just new users, but also existing
users by increasing their anonymity sets. However, growing the net-
work further has several research and deployment challenges. One
such challenge is supporting the increase in bandwidth required by
additional users joining the network. While adding more Tor relays
to the network would increase the total available bandwidth, it re-
quires network architecture changes to reduce the impact of Tor’s
growing directory documents. In order to increase the total avail-
able network bandwidth without needing to grow Tor’s directory
documents, this work provides a multi-threaded relay architecture
designed to improve the throughput of individual multi-core re-
lays with available network capacity. We built an implementation
of a subset of this new design on top of the standard Tor code
base to demonstrate the potential throughput improvements of this
architecture on both high- and low-performance hardware.

CCS CONCEPTS

• Networks → Network privacy and anonymity; • Computing

methodologies→ Concurrent computing methodologies.

KEYWORDS

Tor, performance, multi-threading
ACM Reference Format:

Steven Engler and Ian Goldberg. 2021. Weaving a Faster Tor: A Multi-
Threaded Relay Architecture for Improved Throughput. In The 16th Inter-
national Conference on Availability, Reliability and Security (ARES 2021),
August 17–20, 2021, Vienna, Austria. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3465481.3465745

1 INTRODUCTION

Tor, an overlay network designed for privacy, anonymity, and cen-
sorship resistance, consists of over 6500 volunteer-run relays as
of March 2021 [22] with a recent estimate of 8 million active daily

∗Work done while at the University of Waterloo

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2021, August 17–20, 2021, Vienna, Austria
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9051-4/21/08. . . $15.00
https://doi.org/10.1145/3465481.3465745

users [14]. While the Tor network user base is large, there is po-
tential for it to grow significantly. The demand for web privacy
tools has been demonstrated by not only the popularity of Tor, but
also the popularity of the consumer VPN industry and the inclu-
sion of private browsing modes and anti-tracking features in major
browsers [18].

Growing the Tor network and its number of users is important
not only for helping more people protect their online presence, but
also to help existing users by increasing their anonymity set and
improving their privacy. If Tor’s usage is to increase, the network
must have the capacity to support the additional users. Simply in-
creasing the number of relays in the network is problematic for a
number of reasons, one of which is the growing size of Tor’s di-
rectory documents. While several approaches have been proposed
to help the network scale, they often require network-level archi-
tectural changes. As a distributed, community-run network, these
architectural changes are difficult to design, complicated to deploy,
and require careful consideration to avoid partitioning the users in
a way that could harm their privacy.

We propose a multi-threaded relay architecture that better uti-
lizes existing network relays. By modifying only the internal relay
architecture rather than the network architecture, the network can
be improved through independent, uncoordinated upgrades to exist-
ing relays.While some relays are limited by network capacity, either
from slow Internet or configuration limits set by the relay operator,
other relays are not. These could range from relays operated by
academic or other large institutions with high-bandwidth Internet
lines, to relays running on low-performance servers such as cloud-
hosted virtual private servers or small single-board computers like
the Raspberry Pi. If these relays are not network-limited, they will
often be CPU-constrained due to Tor’s mostly single-threaded relay
architecture. The multi-threaded relay architecture we describe
in this work better uses the CPU resources of congested relays
with available network capacity, with the goal of providing more
capacity to the network to support more users. As Tor’s current
single-threaded relay architecture does not trivially adapt to multi-
threading, this work presents a multi-threaded relay architecture,
along with an implementation.

Contributions:We provide the following:

• A multi-threaded relay architecture that preserves compat-
ibility with the existing Tor network and parallelizes the
end-to-end flow of network data through the relay.

• A multi-threaded relay implementation realizing a subset of
our multi-threaded architecture and a performance evalua-
tion.

https://doi.org/10.1145/3465481.3465745
https://doi.org/10.1145/3465481.3465745

ARES 2021, August 17–20, 2021, Vienna, Austria Steven Engler and Ian Goldberg

2 RELATEDWORK

2.1 Tor

Tor is a transport-layer overlay network designed to provide ano-
nymity at the network layer [4]. When a user application wishes to
route a TCP connection through Tor, it will forward that request to
a SOCKS proxy exposed by a Tor client running on the user’s device.
This Tor client builds multi-hop circuits through relays on the Tor
network and will assign the proxy request to one of these circuits.
The client can request that any hop along this circuit make the TCP
connection leaving the Tor network to the destination server that
was initially requested by the application, although the standard
Tor implementation always requests that the final hop in the cir-
cuit make this connection. While the circuit is the multi-hop path
from the Tor client to the last hop (the exit relay), the end-to-end
path from the user’s application through a circuit and to the final
destination server is known as a stream. Tor can multiplex multiple
streams through a single circuit in order to improve performance.

Clients download directory documents containing information
about every relay in the network, and use these documents to con-
struct circuits. This circuit construction uses a telescoping design
that allows the Tor client at the circuit’s origin to incrementally
build a secure, confidential communication channel between it and
each hop in the circuit. Protecting this communication is important
not only for protecting the contents of the application stream, but
also to prevent any intermediate relay from learning the circuit’s
full path during circuit creation (each relay only learns the identity
of its two adjacent nodes). Since circuits typically use three hops
for circuits that provide anonymity, each hop is referred to by a
name given its position in the circuit: the entry relay, middle relay,
and exit relay.

Tor processes communicate using a custom application-level
protocol, which consists of sending cells across TLS-encrypted re-
lay connections. Any circuits on the network that pass along this
edge will be multiplexed over this connection. There are different
cell types for actions such as building or destroying circuits, re-
laying data, padding connections, negotiating protocol versions,
authenticating relays, and more. The type of cell is specified by its
cell command, and while most of these cells are designed only to
be passed between two directly connected Tor processes (whether
relays or clients), Relay cells and its various sub-types are designed
to pass a message along a circuit and are how a circuit’s origin
communicates privately with each hop along the circuit’s path.
These Relay cells are constructed using a layered-encryption design
that allows only a specific hop to read the cell’s payload. When a
relay receives a Relay cell and removes the outermost layer of this
encryption, the cell may be recognized if it is intended for this relay,
or unrecognized if the relay should pass the cell on to the next hop
in the circuit.

2.2 Tor Routing Performance

The performance of Tor’s volunteer-run relays is fundamental to
the health of the network, and there has been plenty of work to
monitor and improve this performance [2]. For interactive applica-
tions such as web browsing, the end-to-end latencies of connections
over the Tor network have a large impact on usability. Prior work
has shown that relays are the main contributors to delays in Tor,

largely due to relay congestion [3]. These delays vary greatly across
relays and over time making them unpredictable. In order to im-
prove the performance and usability of interactive applications,
priority-based circuit scheduling was introduced as a measure to
improve latency by prioritizing bursty circuits [20]. To improve the
effectiveness of circuit scheduling, Jansen et al. proposed a smarter
connection scheduler [8], which moves the queueing delay from
the kernel’s outbound queues to Tor’s internal cell queues. This
kernel-informed socket transport (KIST) scheduler gives Tor better
scheduling control. Both of these designs are in use by Tor relays
today.

To limit congestion, Tor uses a simple window-based flow control
algorithm that limits the number of in-flight cells on circuits and
streams. Since relays communicate at the application layer, the
Tor network breaks the end-to-end congestion control principle
and instead uses an entry-to-exit flow control for both circuits and
streams. This flow control is in addition to the link-based TCP
congestion control between relays. To examine the performance
of Tor’s flow control, AlSabah et al. studied the effect of smaller
and dynamic window sizes on download times and time to first
byte [1].

2.3 Tor Network Architecture Changes

Our work on improving the throughput of CPU-limited relays using
multi-threading is largely orthogonal and complementary to other
network scaling and performance improvements. The most promis-
ing network scaling approach today is Walking Onions [12], a new
circuit construction design that allows the network to grow while
having constant-sized directory documents and without relaxing
Tor’s security, correctness, or privacy properties. However, Walking
Onions requires significant changes to Tor’s network architecture
and protocols.

A multi-threaded relay architecture enables an increase in the
network capacity without increasing the network size or requiring
any network architectural changes. For a given amount of traf-
fic, distributing the work across multiple threads can also reduce
processing and queueing delays, improving latency. Network archi-
tecture changes will be required in the future to scale beyond the
improvement provided by a multi-threaded relay architecture, but
these network-level scalability solutions are much more difficult to
deploy. Notably, both the circuit and connection scheduling designs
described in Section 2.2, which have been deployed widely on the
Tor network, are relay changes and not network changes.

3 CURRENT TOR RELAY ARCHITECTURE

Before presenting a multi-threaded relay architecture, it is impor-
tant to discuss Tor’s current relay architecture. The multi-threaded
architecture is heavily inspired by this current architecture and
they share many similarities. Since we are interested in paralleliz-
ing the end-to-end processing of most network data through the
relay, this section focuses on Tor’s networking, its processing of
different cell types, and how data is communicated between the
relay’s components.

As Tor is an overlay network, multiple streams can be multi-
plexed over a single circuit and multiple circuits can be multiplexed

Weaving a Faster Tor: A Multi-Threaded Relay Architecture for Improved Throughput ARES 2021, August 17–20, 2021, Vienna, Austria

Relay
Connection

Connection
Buffers

Circuit Cell
Queues

Tor Relay

Edge
Connection

Figure 1: A basic overview of the flow of relayed data

within a Tor relay.

over a single relay connection. Due to this multiplexing, data re-
ceived on one connection is distributed to many other connections
as visualized in Figure 1. Relays must receive data on one con-
nection, determine which circuit (and possibly which stream) it
belongs to, process it, and often send it out on another connection.
Within a relay, connections are intrinsically linked by circuits to
other connections.

Relays classify their TCP connections into several types depend-
ing on their purpose. The important connection types for this dis-
cussion are TLS-encrypted relay connections (connections between
Tor processes) and edge connections (connections entering or leaving
the Tor network). For each connection Tor maintains an inbound
and outbound buffer for reading/writing to the connection’s socket.
Circuit objects hold state for each circuit that passes through the
relay (for example its forward and backward session keys) and keep
references to any associated relay or edge connections. Circuit ob-
jects also keep outgoing cell queues, which are FIFO linked lists
of cells that are to be sent on a relay connection. Relays use an
event-driven design that runs a libevent-based eventloop [16] to
wait for non-blocking network, timer, and signal events and run
their corresponding event callbacks.

Relays must handle requests to create circuits, extend circuits,
establish streams, relay data, and more. These requests cannot be
handled independently as Tor’s connection and circuit multiplex-
ing requires the relay to share state among these requests. Tor
stores most of this state in global lists and hash tables that are
accessible everywhere within the relay. Relays use a scheduler to
improve prioritization and reduce queueing delays on outbound re-
lay connections. Tor’s KIST scheduler copies cells from circuits’ cell
queues to their linked connections’ outbound buffers, and writes
the buffers to their corresponding sockets immediately within the
scheduling loop as shown in Figure 2. Tor’s scheduler only acts on
circuits’ cell queues, meaning it plays no role in cells that are added
directly to a relay connection’s outbound buffer, or in writing to
edge connections (which do not use cell queues).

A

Scheduler
Connection

Buffers

Circuit Cell
Queues

Relay Connections

Edge Connections

Relay

Relay

Relay

Website

A

B

C

D

D

B

C

Figure 2: Tor’s connection scheduler sits between the cell

queues and relay connections’ outbound buffers, and re-

quires global knowledge about each connection and cell

queue.

3.1 Other Relay Components

While our architecture does not consider every feature that Tor im-
plements, there are a few other important components to consider.
Relays record and limit how many bytes they read and write to
the network using both token bucket-based and accounting-based
bandwidth limits, some of which are global across all connections.
A relay will also destroy some of its circuits and connections if its
memory usage becomes too high, either due to limited resources
or denial-of-service attacks [10]. The Tor network supports onion
services, which are anonymous servers that Tor clients can connect
to using a known onion service name. The client and service build
their own anonymous circuits to a rendezvous relay selected by the
client, and the relay links the two circuits such that cells arriving
from one circuit are redirected to its paired/spliced circuit.

Relays use multi-threading only to move small isolated tasks
outside of the main eventloop using a threadpool and work queues.
Tor uses this threadpool of CPU worker threads for processing cir-
cuit handshakes, compressing network consensus documents for
caching, and for computing the difference between cached con-
sensus documents. While parallelizing these tasks does offer some
performance improvement to the relay, the primary task of forward-
ing cells along circuits is not parallelized and does not scale over
multiple threads. In the next section, we present a multi-threaded
architecture that does parallelize this end-to-end relaying of data.

4 A MULTI-THREADED TOR RELAY

ARCHITECTURE

In this section we propose a multi-threaded Tor relay architecture
that parallelizes the end-to-end processing of relayed data as it
passes through the relay. We have three primary goals:

• Preserve compatibility with the existing live Tor network.
• Parallelize the end-to-end flow of unrecognized Relay cells
throughout the relay.

• Maintain some similarity with Tor’s existing relay architec-
ture in order to increase the amount of code that can be
re-used in its implementation.

The maximum throughput of a relay, assuming it is not limited
by network bottlenecks or configuration options, is largely limited

ARES 2021, August 17–20, 2021, Vienna, Austria Steven Engler and Ian Goldberg

Relay
Connection

Relay
Connection

Circuit
Object

Edge
Connection

(a) Tor’s architecture: A single circuit object is shared by up to two

relay connections and possibly many edge connections. Through

the circuit object, each connection can directly access any other.

Relay
Connection

Relay
Connection

Edge
Connection

Circuit Half

Circuit Edge

Thread-Safe
Channels

(b)Multi-threaded architecture: No connection (nor circuit half) can

access their counterpart directly. Instead they can only communi-

cate through thread-safe asynchronous channels.

Figure 3:Comparison of the navigability of Tor’s circuit ob-

jects compared to the multi-threaded architecture’s circuits.

Dashed lines represent channels.

by the rate at which a relay can receive, process, and send cells.
The path through the relay that these cells take is often referred
to as the fast (or sometimes critical) path. This is the path from
reading cells on TLS-encrypted relay connections, parsing the cells,
processing them, scheduling their circuits, and writing them on a
different TLS connection (or edge connection). This path is largely
CPU-limited and the Tor developers have put effort into improving
its performance [5, 15]. This is the path that we parallelize across
threads.

If the total throughput of a relay increases, it can either handle
more users at a given per-circuit throughput, or provide higher
throughput per circuit for the same number of users. If the relay
serves as a bottleneck for the circuit, this higher relay through-
put could improve the circuit’s overall throughput. Increasing the
throughput of a Tor circuit has the potential to improve its overall
latency as well due to Little’s law [13] where a Tor circuit acts as a
limited-length queue of in-flight cells in the network.

Rejected designs: We considered two alternative designs for dis-
tributing relay data processing across CPU cores. Rather than de-
signing a new architecture for parallel end-to-end processing of
cells, an alternative design could offload expensive parts of this cell
processing to a work queue and threadpool. This approach would
offer limited scalability since some expensive operations such as
connection/circuit scheduling do not translate easily to a work
queue design, and there is not a straightforward set of expensive
operations that can be parallelized. Another approach might be to
run multiple Tor relays on the same server (possibly one per CPU
core). This approach unnecessarily grows Tor’s consensus docu-
ment, adds additional load to directory authorities and directory
caches, limits the relay’s ability to load-balance connections across
CPU cores, and would require relaxing Tor’s Sybil attack mitigation

limit of 2 relays per IPv4 address. While these designs would likely
be simpler to implement, they would not be expected to scale well
across cores and have unnecessary overhead.

4.1 The Multi-threaded Relay Architecture

Ourmulti-threaded architecture parallelizes the end-to-end process-
ing of relayed data by distributing its connections across additional
threads with their own eventloops. These threads are responsible
for reading, processing, and writing network data for each of their
connections. Communication between threads uses asynchronous
messages passed along thread-safe buffered channels that integrate
into the eventloop. This architecture focuses on the main onion-
routing tasks of a Tor relay such as creating and extending circuits,
relaying data, and connection/circuit scheduling. It aims to require
little shared state, remove the dependence of connection objects on
one another, and provide well-defined ownership of connection and
circuit objects. This leads to few required locks and safer memory
management. This multi-threaded architecture is complementary
to Tor’s existing work queue and threadpool.

Unlike Tor’s current architecture where one connection object
can directly access another through a shared circuit object, this type
of multi-threaded architecture requires clear separation between
connections. Since connections should not share a single circuit
object, circuits are instead split into two circuit halves, one for each
connection. These two circuit objects have no reference to each
other and can only communicate over a thread-safe channel as
shown in Figure 3. This independence allows two connections to
be owned by different threads while still allowing their circuits to
communicate with limited and well-defined shared state (the chan-
nel) and without potentially introducing unsafe memory conditions.
Channels are also used for communication between each additional
thread and the main thread, which acts as a global controller for
the relay.

4.2 Building Blocks

The multi-threaded architecture is made up of several components,
and Figure 4 presents an overview of how these components fit
together.

Channels. Rather than sharing state across threads, channels1
are used to send messages and pass ownership of data between
threads. Each channel should provide the ability for two threads
to asynchronously send and receive messages. Channels are bi-
directional, buffered, and should integrate into the eventloop such
that each end of the channel is notified of messages added at the
opposite end.

Circuit half and circuit edge. Circuit information is stored in
circuit objects: a circuit half for relay connections and a circuit edge
for edge connections. Each circuit half has its own cell queue for
cells exiting the relay from its half. A circuit half can be linked by
channels to at most one other circuit half, but can also be linked
to many circuit edges as shown in Figure 3. For each other circuit
object they are linked to, circuit objects hold ends of two differ-
ent channels, one for general data/cells and the other for control

1Tor’s implementation uses channel objects which were originally designed to act as a
cell-handling abstraction for relay connections, but our use of the term channel in this
paper is unrelated and refers to a means of communication between threads.

Weaving a Faster Tor: A Multi-Threaded Relay Architecture for Improved Throughput ARES 2021, August 17–20, 2021, Vienna, Austria

Connection Manager

Scheduler Eventloop

Edge
Connection

Relay
Connection

Relay
Connection

Relay
Connection

Connection Manager

Scheduler Eventloop

Relay
Connection

Edge
Connection

Relay Controller Connection Manager

Connection Thread 1

Connection Thread 2

Connection Thread 3

Main Thread

Eventloop Scheduler Eventloop
Circuit Edge

Circuit Half

(a) Overview of the message-passing architecture using three con-

nection threads with several connections and circuits. The relay

controller runs in the main thread’s eventloop, while the local con-

nection managers each run in their own connection thread.

Control
Messages

Stream Data

Control
Messages

Cell Messages

Relay
Controller

Connection
Manager

Connection
Messages

(b) Types of messages/data that each channel uses.

Figure 4: Overview of the message-passing architecture.

Channels are represented by dashed lines.

messages (see Figure 4b). Distributing message types across two
channels is useful for prioritizing control messages such as circuit
destroy messages.

Local connection manager. As each connection thread must
manage many connections, each thread uses a local connection man-
ager. This stores each connection that it owns in a hash table (keyed
by a globally unique connection identifier), and is responsible for
maintaining those connections by attaching them to the local event-
loop, refilling their rate-limiting token buckets, adding connection
padding, etc. While these tasks do not require a global view of the
relay, other tasks required by the relay, such as extending circuits
or performing denial-of-service prevention, do.

Relay controller. Tasks that require a global view of the relay
are instead performed by the relay controller running in the main
thread. This relay controller holds the information it requires about
all of the relay’s connections and circuits, but importantly not ref-
erences to the connection and circuit objects themselves as these
are owned by the local connection managers. For example, this
relay controller will maintain a hash table mapping the public iden-
tity digests for all connected relays to their corresponding unique
connection identifiers (the same connection identifiers stored by
its local connection manager). Each local connection manager has

a channel between itself and the relay controller for use when it
needs to perform tasks that require some global knowledge.

Eventloop.We do not define the structure of the eventloop in
our architecture, but we assume a libevent-like library. Connections
should be able to modify their events and enable or disable them
when needed; for example, disabling a socket read event if a token
bucket does not allow any more bytes to be read.

4.3 Connections and Scheduling

New connections are created in two cases: the relay requires a
connection to an external relay or server, or one of the relay’s
listening sockets accepts a new connection. Both of these cases
are handled by the relay controller. After opening or accepting
a connection, the controller chooses a globally unique identifier
for the connection. It then transfers this chosen identifier and the
ownership of the connection object to one of the connection threads’
local connection managers by sending a message along its channel.
On receiving the message the local connection manager registers
socket readable/writable events for the connection with the thread’s
eventloop.

Tor’s scheduling loop is performance-critical and requires a
global view of all connections in the relay, which is problematic
in a multi-threaded architecture since the scheduler would either
need to acquire locks on each connection, or use message passing to
inform connections about how much data they can send. The large
amount of locking would harm the relay’s performance, and mes-
sage passing would break some of the assumptions of Tor’s primary
scheduler, the KIST scheduler. Rather than using a global scheduler,
each local connection manager uses its own local scheduler which
processes only the connections it owns. As the connection manager
can perform its scheduling operations without locking or needing
to synchronize with other connection managers, this approach does
not break any of the assumptions of KIST. In practice scheduling
is not an operation that must provide perfect prioritization, and
we do not expect that using one scheduler per thread rather than
one global scheduler would significantly harm the performance of
the relay or its circuits as long as connections are reasonably load-
balanced across connection managers (and consequently across
threads).

This architecture does not provide a definitive solution for load-
balancing connections as this would depend strongly on the imple-
mentation and performance benchmarks. For each new connection,
a trivial method of load-balancing connections would be for the
relay controller to assign them to local connection managers in a
round-robin manner. In practice this may perform badly as some
connections will be more popular and may outlive others. Instead
it might be useful for connections to occasionally report recent
usage metrics (such as an exponentially weighted moving average
of the bytes sent/received) back to the relay controller so that it
can better load-balance new connections. The controller may also
wish to occasionally move connections between local connection
managers.

4.4 Extending Circuits and Relaying Data

When relay connections receive cells, the connections may need to
communicate with the relay controller. They do so using their local

ARES 2021, August 17–20, 2021, Vienna, Austria Steven Engler and Ian Goldberg

Circuit Half Circuit Half

Channel Cell Queue

Scheduler

Relay
Connection

Relay
Connection

(a) Relay cells moving forward along a circuit at a relay.

Circuit Edge Circuit Half

Channel Cell Queue

Scheduler

Relay
Connection

Edge
Connection

(b) Relay cells moving forward along a circuit at the circuit’s origin.

Client's
Circuit Half

Service's
Circuit Half

Channel Cell Queue

Scheduler

Relay
Connection

Relay
Connection

(c) Relay cells (sent by the client) switch circuits at a rendezvous

point.

Figure 5: Examples of the circuit objects and key locations

in various circumstances. Each circuit’s forward direction

(away from the origin) is left-to-right.

connection manager’s channel to the relay controller. For example
when receiving a request to create a new circuit, the connection
must query the relay controller’s denial-of-service prevention sub-
system by sending messages along this channel. The connection
may also need to communicate with other connections. While the
connection cannot communicate with other connections directly,
it can do so using the relay controller as an intermediary. For ex-
ample when receiving a request to extend a circuit, the connection
can send a message along the same channel to inform the relay
controller which connection it would like to extend a circuit to. The
relay controller creates a new channel and sends each connection
one end of the channel so that future cells on that circuit can be
passed directly between circuit halves rather than needing to be
passed through the relay controller.

From a relay’s perspective, all circuits are directional and asym-
metric; Relay cells travelling forward down the circuit (away from
the circuit’s origin) may be recognized by this relay, but Relay cells
travelling backward can never be. This asymmetry means that a cir-
cuit’s session keys must always be stored in the circuit half closest
to the circuit’s origin (see Figure 5), and that these circuit halves can
operate independently of one another. For general-purpose circuits
this means that only one circuit half performs cell encryption or
decryption and the other will simply pass the Relay cell on. The
independence between circuit halves translates naturally to circuits
at rendezvous points, which link circuits together as described in
Section 3.1. In this case, both circuit halves are closest to their own
circuit’s origin and will therefore each have their own session keys.

These circuit halves can be linked with a channel just like general-
purpose circuits, but instead both circuit halves will perform their
own independent cell encryption or decryption.

Passing cells between circuit halves is straightforward. If one half
wishes to transfer a cell to the other, it writes a reference to the cell
payload and its cell command to the cell channel. The other circuit
half will be notified of the new cell and can read the reference from
the channel, thereby taking ownership of the cell. If it is a Relay cell
and the circuit half has a session key, the circuit half may encrypt
or decrypt the cell payload. The cell payload and command are then
combined with the circuit identifier to form a packed cell, which can
then be added to the circuit half’s cell queue and later sent by the
scheduler like Tor’s current architecture. While a circuit half can
be linked to at most one other circuit half, it may be linked to many
circuit edges (one for each stream) as shown in Figure 3. When a
circuit half is linked to a circuit edge, these communicate over a
data channel rather than a cell channel. This channel transports
raw application/stream data rather than cells. The circuit half is
responsible for converting between this application data and Relay
cells, and performing any required cryptography. All information
that is shared between connections travel through these channels.

4.5 Bandwidth Accounting and

Out-of-memory Handling

While much of the relay’s global state can be handled asynchro-
nously by the main thread’s relay controller, connections may need
to access some global state synchronously. For example, relays are
often configured with global bandwidth limits. Each thread must
make sure that they combined do not exceed any of these limits,
which requires either careful synchronization of token buckets, or
dividing token buckets between threads. Memory management is
another component that requires a global view of the relay. Tor
re-calculates its memory usage and runs its out-of-memory han-
dler if needed for every relayed cell. This is not possible in our
multi-threaded architecture, but each connection manager could
periodically re-calculate the memory usage of each connection and
circuit and send this information in a message to the relay con-
troller. Each time the controller receives updated memory usage
information, it can store the updated usage data and possibly choose
connections or circuits to close.

4.6 Limitations

This architecture does not attempt to describe every aspect of a
Tor relay. For example, we do not touch on a relay’s optional direc-
tory server or onion service directory, introduction points, control
connections, and more. Instead we focus on the routing tasks of a
relay. That said, we do describe how some additional components
fit into the architecture such as denial-of-service prevention, out-
of-memory handling, and bandwidth accounting. In addition, due
to the prevalence of global state in Tor and the widespread use of
connection and circuit objects, implementing the architecture may
require significant development effort. The Tor Project is currently
in the initial stages of developing a new Tor code base in Rust us-
ing an asynchronous runtime environment (currently supporting
async-std and tokio) [21], which would be an ideal time to adopt a
multi-threaded architecture.

Weaving a Faster Tor: A Multi-Threaded Relay Architecture for Improved Throughput ARES 2021, August 17–20, 2021, Vienna, Austria

Table 1: Experiment configurations for the two servers, with one stream per circuit.

Name

Client

Proxies

Entry

Relays

Exit

Relays

Streams per

Client

Data per

Stream

Total

Circuits

Intel Server 150 300 300 10 10MiB 1500
Raspberry Pi 100 300 300 6 5MiB 600

4.7 Summary

Our multi-threaded relay architecture fulfills our three goals out-
lined at the start of the section:

• Preserve compatibility with the existing live Tor network —
we do not require changes to any of Tor’s network protocols.

• Parallelize the end-to-end flow of unrecognized Relay cells
throughout the relay — we use connection threads with cir-
cuit halves and channels for communication across threads.

• Maintain some similarity with Tor’s existing relay architec-
ture in order to increase the amount of code that can be
re-used in its implementation — we keep many of the same
design concepts such as the scheduler, circuit cell queues,
and the eventloop.

As the processing of unrecognized Relay cells does not require
interactionwith themain thread, we expect this architecture to scale
well across threads when relaying large amounts of data. Tasks such
as circuit extension, accepting incoming connections, processing
consensus documents, and uploading the relay descriptor do rely on
themain thread, whichmay become a bottleneck for the relay, but as
the end-to-end processing of unrecognized Relay cells is completely
independent, the throughput of existing connections and circuits
should not be limited by this bottleneck. To understand how the
relay scales in practice, we experiment with an implementation of
key portions of our multi-threaded architecture next.

5 IMPLEMENTATION AND EVALUATION

To understand the performance of our multi-threaded architecture,
we developed our relay implementation on top of the existing Tor
implementation (which we refer to as vanilla Tor). This section
describes our multi-threaded implementation and how it compares
to the multi-threaded architecture, and evaluates its performance.

We created a proof-of-concept implementation of an important
portion of our architecture from Section 4 and demonstrate that
even this portion yields significant performance improvements (im-
plementing the entire architecture at a production-ready level for
deployment on the live network is beyond the scope of this work).
This implementation demonstrates a lower bound for the perfor-
mance improvement that could be obtained from implementing the
entire multi-threaded architecture. We focused on parallelizing two
primary components of Tor’s fast path: the socket communication
and TLS cryptography.

Our experiments evaluate the performance of the multi-threaded
relay on two systems with very different performance character-
istics. While high-performance relays will typically be running
on powerful hardware, multi-threading has the potential to im-
prove relays running on limited hardware as well. Relays with low
throughput and unpredictable latency can harm the experience for
users, so improving the performance of these relays is important

Target Relay

Exit RelaysEntry Relays

Client
Proxies

Application
Processes

Server
Processes

Figure 6:Overview of the experiment network and paths of

circuits. Each circuit is routed through the target relay.

for providing a more stable experience for users. In addition, due
to their relatively low cost at around $50, these single-board com-
puters reduce the barrier to entry for people wanting to contribute
their own bandwidth to the network, or people who wish to run
bridge relays for friends with censored Internet.

5.1 Multi-threaded Relay Implementation

The multi-threaded relay implementation described in this section
was based on Tor 0.4.2.6 (released January 2020), and the implemen-
tation code is available at https://git-crysp.uwaterloo.ca/sengler/
tor-parallel-relay-conn. The evaluation code is also available at
https://git-crysp.uwaterloo.ca/sengler/relay-throughput-testing.

Tor’s current relay architecture uses several design patterns that
make it unsuitable for multi-threading. For example, Tor makes
heavy use of global state, singletons, and circular references be-
tween connection and circuit objects. Sharing this data across
threads in a safe and efficient manner is non-trivial. Due to these
challenges with Tor’s existing codebase, we opted (as described
above) not to implement the entire multi-threaded architecture.
Instead we implemented a subset of the architecture with much of
the relay’s cell processing remaining in the main thread. Rather
than passing cells directly between connection threads, cells are
passed from a connection thread to the main thread for processing,
and later from the main thread to another connection thread. As
described in Section 4.1, the relay’s main thread starts multiple con-
nection threads, each with its own eventloop. Rather than moving
each entire connection object to a connection thread, we moved
small logical pieces out of the relay connection objects and into
new thread-safe objects that could be shared among threads.

5.2 Experimental Design

Our experiments were designed to evaluate the throughput of our
multi-threaded relay as a middle relay (the most common type
of relay on the network) by measuring the maximum sustained

https://git-crysp.uwaterloo.ca/sengler/tor-parallel-relay-conn
https://git-crysp.uwaterloo.ca/sengler/tor-parallel-relay-conn
https://git-crysp.uwaterloo.ca/sengler/relay-throughput-testing

ARES 2021, August 17–20, 2021, Vienna, Austria Steven Engler and Ian Goldberg

Table 2: System information about the three servers used

in our experiments. For Intel CPUs, core counts represent

virtual cores (including hyperthreading).

Name CPU RAM NIC

Intel Server 6 cores of a 16-core
2.40GHz Intel Xeon 128GiB 10Gbps

Raspberry Pi Quad-core 1.4 GHz
ARM Cortex-A53 1GiB 1Gbps over

USB 2.0
Control
Server

4×16-core 2.40GHz
Intel Xeon 512GiB 10Gbps

and 1Gbps

throughput of the relay while under heavy CPU load. These experi-
ments were not designed to model real-world Tor network traffic,
but rather to provide a simple model for comparing specific aspects
of the relay’s performance. In order to saturate the relay, Tor clients
(on an experimental Tor network, not the live network) build hun-
dreds of circuits through a single target relay and simultaneously
send data through these circuits to a server. Each circuit we create
uses a non-exit relay as the first hop, the target relay as the middle
hop, and an exit relay as the final hop as shown in Figure 6. We use
the Stem library [11] to build circuits with specific paths and attach
our streams directly to those circuits. Table 1 shows the various
network parameters for each server.

We run all of the relay, proxy, client, and server processes on
a single computer, which we will call the control server, except
for the target relay, which runs on a separate computer. In order
to test the relay performance on a variety of hardware, we run
experiments with the target relay running on a modern Intel Xeon
server, which we will call the Intel server, and also on a slower
but much less expensive quad-core Raspberry Pi 3B+ single-board
computer2 lacking hardware-accelerated AES support, which we
will call the Raspberry Pi server. Table 2 shows the configuration
of each system. When running on the Intel server, we assign the
target relay process a NUMA policy with 6 virtual CPU cores (3
physical cores and their paired hyperthreading cores) and memory
on the same NUMA node.

We run the target relay in a few different configurations for
performance comparisons. As a baseline we use the standard Tor
implementation (vanilla Tor) with a small patch to log its through-
put. We also use our multi-threaded relay implementation with the
same patch and run it with varying numbers of relay connection
threads. Each client and relay in these experiments is based on Tor
0.4.2.6. We also disabled the directory cache functionality on the
target relays since our experimental Tor network used a consensus
voting interval of 40 seconds compared to 1 hour on the real Tor
network to speed up bootstrapping.

Once the circuits have been built on all clients, we start applica-
tion processes, which connect to the SOCKS ports on our clients.
Each of these application streams is assigned to a different circuit so
that there is at most one stream per circuit. These streams connect
through the Tor network to a server, which forks and handles each
stream in its own process. Once all of the application streams have
been attached to circuits, all client processes begin simultaneously
2The Raspberry Pi’s Ethernet adapter is attached over USB 2.0, limiting the effective
bi-directional network bandwidth to ~150Mbps.

0
250
500
750

1000
1250
1500

Th
ro

ug
hp

ut
 (M

bp
s)

Intel Xeon Server

0
25
50
75

100
125
150

Raspberry Pi 3B+

Vanilla Tor
MT Tor (+0 threads)
MT Tor (+1 thread)

MT Tor (+2 threads)
MT Tor (+3 threads)

Figure 7: Maximum sustained throughput over 30 seconds

of an original Tor relay and a multi-threaded Tor relay with

varying numbers of connection threads. Error bars show the

minimum and maximum values measured over 10 repeti-

tions. All relay versions use the jemalloc memory allocator.

sending data through the Tor network to the server. All of these
circuits pass through the target relay, and since the control server
uses significantly more CPU cores than the target relay to process
the same amount of network data, the target relay becomes the bot-
tleneck limiting the application stream throughput. As the server
processes receive data, they record the time and number of bytes
read from the socket. Eventually all server processes receive their
data and the experiment ends.

5.3 Results

Following the experimental setup in Section 5.2, we repeated each
experiment configuration 10 times. Tor’s current relay implemen-
tation is identified by “vanilla Tor”, and the multi-threaded relay
implementation is shortened to “MT Tor”. All of the results in this
section ignore Tor’s CPU-worker threads (see Section 3.1), which
were almost completely unused and have an insignificant effect on
the CPU performance and throughput of the relay in these experi-
ments. For results with the multi-threaded relay implementation
where there are no connection threads, all code is run in the main
thread much like vanilla Tor. All results are shown using the jemal-
loc memory allocator due to its better multi-threaded performance
compared to the GNU glibc allocator, with no detrimental effect on
single-threaded performance.

5.3.1 Throughput. Each experiment logs the number bytes sent
and received on relay connections every 500ms. From this data we
find the maximum sustained throughput over a 30 second period
(the maximum of a 30 second moving average), discarding the first
30 seconds of throughput data. As shown in Figure 7, we see a
significant throughput improvement with our multi-threaded relay
when using several threads. When running with three connection
threads, the maximum sustained throughput is about 4.3 times
greater than vanilla Tor on the Intel server, and about 3.1 times
greater on the Raspberry Pi server. The maximum throughput of
the multi-threaded relay on the Raspberry Pi is very close to the
limit of its USB-attached network adapter (about 150Mbps).

Weaving a Faster Tor: A Multi-Threaded Relay Architecture for Improved Throughput ARES 2021, August 17–20, 2021, Vienna, Austria
Cu

m
ul

at
iv

e
fra

ct
io

n
of

 st
re

am
s

0 100 200 300 400
Time to last byte (s)

0.00
0.25
0.50
0.75
1.00

(a) Intel server

0 200 400 600
Time to last byte (s)

0.00
0.25
0.50
0.75
1.00

(b) Raspberry Pi

Vanilla Tor
Multi-threaded Tor (+0 threads)
Multi-threaded Tor (+1 thread)
Multi-threaded Tor (+2 threads)
Multi-threaded Tor (+3 threads)

Figure 8: The time to last byte (upload time) for each stream combined for all 10 repetitions.

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 st

re
am

s

0 2 4 6
Time to first byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

(a) Intel server

0 2 4 6 8 10 12 14
Time to first byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Raspberry Pi

Figure 9: The time to first byte for each stream combined for all 10 repetitions.

When assessing the performance scaling of our relay implemen-
tation with varying numbers of threads, the single-threaded per-
formance is not directly comparable to the multi-threaded perfor-
mance since the single-threaded case is handled differently. When
running our relay implementation with only a single thread (no
connection threads), the connection processing code is run in the
main thread and shares the CPU core’s capacity with other pro-
cessing performed by the relay in the same thread. This is useful
for comparing this special case to vanilla Tor. When running with
a single thread (no connection threads), the multi-threaded relay
implementation performs very similar to vanilla Tor even with the
multi-threaded relay’s additional overhead from message passing.

5.3.2 Stream Performance. The previous results have looked at the
performance of the relay as a whole, but the performance of the
individual application streams is also important as it influences the
end user’s experience. We measure the streams’ upload times (time
to last byte) and their initial upload latencies (time to first byte), and
show them in Figures 8 and 9. When using no connection threads,
the multi-threaded relay performed similar to vanilla Tor, showing
that the multi-threaded relay does not have significantly worse
latency or throughput compared to vanilla Tor when running only
in the main thread.

As expected since all streams are effectively the same, all of the
streams complete around the same time, demonstrating that our
multi-threaded relay does not seem to negatively affect the relay’s
circuit prioritization mechanisms in our experiments. When scaling
the multi-threaded relay to additional connection threads, streams
completed much quicker due to the higher relay bandwidth, which
corresponds to much faster data transfer rates for clients. Since all
streams are started at the same time, the relay quickly becomes

saturated, and the time to first byte of each stream corresponds to
the latency during this time. Figure 9 shows that the multi-threaded
relays had lower initial latencies than vanilla Tor.

5.4 Discussion

Our relay implementation successfully used multiple CPU cores to
improve the relay’s throughput. The maximum sustained through-
put tripled on the Raspberry Pi and quadrupled on the Intel server
when running with three connection threads. The initial latency
measurements also improvedwhen using our implementation.With
a throughput of nearly 150Mbps, the Raspberry Pi running the
multi-threaded implementation becomes a much more viable sys-
tem for running an inexpensive Tor relay.

The multi-threaded relay implementation parallelizes only the
relay connection networking component of the architecture de-
scribed in Section 4, but already demonstrates a significant perfor-
mance improvement of a multi-threaded relay on both limited and
high-performance hardware. It is likely that implementing more
components of the architecture would lead to better scaling over
more CPU cores, as our implementation does not fully realize the
fully parallel end-to-end processing of cells from the multi-threaded
architecture. One of the ways in which our implementation differs
from our architecture is that cells always pass through the main
thread as described in Section 5.1 instead of moving directly be-
tween connection threads. This requires that our implementation
queue more cells than both vanilla Tor and what our architecture
requires, and means that our implementation has a higher memory
usage, but this is a limitation of our proof-of-concept implementa-
tion only and not the architecture itself.

ARES 2021, August 17–20, 2021, Vienna, Austria Steven Engler and Ian Goldberg

The experiments performed in this section do not attempt to
model the real-world Tor network, and it is possible that in practice
the relay may not scale as well as it does in these experiments.
While using more realistic models might provide more realistic
results, our main objective is to provide a multi-threaded relay
architecture, and demonstrate its feasibility.

6 FUTUREWORK AND CONCLUSION

We do not have a good way to measure what fraction of relays
are CPU-limited from publicly available data, and Tor’s bandwidth
measurement infrastructure is designed to prevent relays from run-
ning at full CPU usage in order to leave CPU headroom for bursty
or varying traffic. This makes it difficult to distinguish between
CPU bottlenecks, a lack of user traffic on the network, or side ef-
fects of Tor’s bandwidth measurement infrastructure. In the future,
Tor relays may report CPU metrics that would provide real-world
insights into relay performance [6].

While not all relays today are CPU-limited, many more might
become so as the demand on the network grows. Providing better
CPU utilization using multi-threading has the potential to improve
both high- and low-performance Tor relays. Congested relays have
been shown to cause a large negative impact on stream latencies
and throughput [3, 19], so reducing the opportunity for congestion
to occur will help the network better handle more traffic and users.
Multi-core CPUs are commonplace today and while clock speeds of
desktop and server x86 CPUs see marginal yearly gains, core counts
have grown significantly in recent years. The network should be
capable of fully utilizing the resources donated by the community.

6.1 Security and Privacy

Ourmulti-threaded architecture does not introduce any new attacks
on users or the network,3 and we note that supporting more users
and growing the network can improve privacy for existing users
by increasing their anonymity set.

One important consideration, however, is the effect on attacks
that rely on distinguishable relay throughputs. For example, an
adversary can probabilistically identify the relay that bottlenecks a
circuit’s throughput by correlating the circuit’s throughput with
individual relay throughput measurements taken using active prob-
ing [17]. This attack depends on a wide range of relays with differ-
ent throughput characteristics, and the faster throughput enabled
by multi-threading may widen the gap between the slowest and
fastest relays, making it easier for attackers to distinguish relays
by their throughput. Furthermore, attacks that rely on circuit la-
tencies, in particular the round-trip time between the client and
the exit [7], may improve if relays’ processing and queueing delays
become more consistent. While the effectiveness of these attacks
may increase as the network performance improves, these attacks
should not discourage performance and scaling improvements. De-
fences should affirmatively address these attacks rather than rely
on limitations of the current deployed network.

3The security of our architecture is not to be conflated with the security of our proof-
of-concept implementation that was built for the experiments in Section 5, and not
intended for deployment on the live network.

6.2 Future Work

When scaling our implementation to several CPU cores, the relay’s
main thread becomes the bottleneck limiting the relay’s throughput.
It is likely that the entire multi-threaded architecture would scale
much better, since it performs the end-to-end processing of Relay
cells completely outside of the main thread, unlike our implementa-
tion where much of the cell processing remains in the main thread.
Implementing the remainder of the architecture and performing
throughput experiments would better show the scaling of the archi-
tecture across CPU cores. In addition, our architecture attempts to
remain similar to Tor’s existing relay architecture, but redesigning
the architecture to make use of user-level threads and a blocking
networking API may significantly reduce the complexity of the
architecture and allow for a simpler relay implementation. Finally,
the experiments in Section 5.2 studied only the relay performance
and not the performance of the network. It would be useful to sim-
ulate a much larger and more realistic network to understand the
effects on the network as a whole and its individual users. However,
we note that Tor network simulators such as Shadow [9] do not
capture the effects of CPU load, and so how to best perform this
simulation is an open question.

6.3 Conclusion

With the objective of scaling the Tor network through internal relay
architecture improvements, this work presented a multi-threaded
relay architecture designed to parallelize the processing of relayed
data. By implementing a subset of this architecture and examining
its throughput and CPU performance in an experimental environ-
ment designed to flood the relay with traffic, we showed that this
design can significantly improve a relay’s throughput when CPU
constrained. As we do not change any aspects of the network’s
architecture or protocols, relays using our multi-threaded archi-
tecture could be easily deployed by relay operators. CPU-limited
relays with excess bandwidth capacity would be able to contribute
more bandwidth to the network when using our multi-threaded
architecture.

ACKNOWLEDGMENTS

This work benefited from the use of the CrySP RIPPLE Facility at
the University of Waterloo. We gratefully acknowledge the Royal
Bank of Canada and NSERC grant CRDPJ-534381 for funding this
work. This research was undertaken, in part, thanks to funding
from the Canada Research Chairs program.

REFERENCES

[1] Mashael AlSabah, Kevin Bauer, Ian Goldberg, Dirk Grunwald, Damon McCoy,
Stefan Savage, and Geoffrey M. Voelker. 2011. DefenestraTor: Throwing out
Windows in Tor. In 11th Privacy Enhancing Technologies Symposium. Springer,
134–154.

[2] Mashael AlSabah and Ian Goldberg. 2016. Performance and Security Improve-
ments for Tor: A Survey. ACM Computing Surveys (CSUR) 49, 2 (2016), 1–36.

[3] Prithula Dhungel, Moritz Steiner, Ivinko Rimac, Volker Hilt, and Keith W. Ross.
2010. Waiting for Anonymity: Understanding Delays in the Tor Overlay. In 10th
IEEE Conference on Peer-to-Peer Computing (P2P). IEEE, 1–4.

[4] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
Generation Onion Router. 13th USENIX Security Symposium (2004).

[5] David Goulet. 2018. cmux: Refactor, test and improve performance of the circuit-
mux subsystem. https://gitlab.torproject.org/legacy/trac/-/issues/25328.

https://gitlab.torproject.org/legacy/trac/-/issues/25328

Weaving a Faster Tor: A Multi-Threaded Relay Architecture for Improved Throughput ARES 2021, August 17–20, 2021, Vienna, Austria

[6] David Goulet and Mike Perry. 2020. Make Relays Report When They Are
Overloaded. https://gitweb.torproject.org/torspec.git/tree/proposals/110-avoid-
infinite-circuits.txt.

[7] Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-Tin. 2010. How Much
Anonymity does Network Latency Leak? ACM Transactions on Information and
System Security (TISSEC) 13, 2 (2010), 1–28.

[8] Rob Jansen, John Geddes, Chris Wacek, Micah Sherr, and Paul Syverson. 2014.
Never Been KIST: Tor’s Congestion Management Blossoms with Kernel-Informed
Socket Transport. In 23rd USENIX Security Symposium. 127–142.

[9] Rob Jansen and Nicholas Hopper. 2012. Shadow: Running Tor in a Box for
Accurate and Efficient Experimentation. In 19th Symposium on Network and
Distributed System Security (NDSS). Internet Society.

[10] Rob Jansen, Florian Tschorsch, Aaron Johnson, and Björn Scheuermann. 2014.
The Sniper Attack: Anonymously Deanonymizing and Disabling the Tor Network.
Network and Distributed System Security Symposium (NDSS) (2014).

[11] Damian Johnson. 2020. Stem. https://stem.torproject.org/.
[12] Chelsea Komlo, Nick Mathewson, and Ian Goldberg. 2020. Walking Onions:

Scaling Anonymity Networks while Protecting Users. 29th USENIX Security
Symposium (2020).

[13] John D. C. Little. 1961. A Proof for the Queuing Formula: L=λW. Operations
Research 9, 3 (1961), 383–387.

[14] Akshaya Mani, T. Wilson-Brown, Rob Jansen, Aaron Johnson, and Micah Sherr.
2018. Understanding Tor Usage with Privacy-PreservingMeasurement. In Internet

Measurement Conference. 175–187.
[15] Nick Mathewson. 2018. See if we can allocate less for HMAC in Tor relays.

https://gitlab.torproject.org/legacy/trac/-/issues/25007.
[16] Nick Mathewson, Azat Khuzhin, and Niels Provos. 2017. libevent – an event

notification library. https://libevent.org/.
[17] Prateek Mittal, Ahmed Khurshid, Joshua Juen, Matthew Caesar, and Nikita

Borisov. 2011. Stealthy Traffic Analysis of Low-Latency Anonymous Communi-
cation Using Throughput Fingerprinting. In 18th ACM Conference on Computer
and Communications Security. 215–226.

[18] Mozilla. 2020. Firefox privacy, by the product. https://www.mozilla.org/en-
CA/firefox/privacy/products/.

[19] Joel Reardon and Ian Goldberg. 2009. Improving Tor using a TCP-over-DTLS
Tunnel. In USENIX Security Symposium. 119–134.

[20] Can Tang and IanGoldberg. 2010. An ImprovedAlgorithm for Tor Circuit Schedul-
ing. In Proceedings of the 17th ACM Conference on Computer and Communications
Security. 329–339.

[21] The Tor Project. 2021. Arti tor-rtcompat library (commit 541883f3).
https://gitlab.torproject.org/tpo/core/arti/-/blob/
541883f3dfb3de25104ade77e3c623e6a6c1a8f4/tor-rtcompat/src/lib.rs.

[22] The Tor Project. 2021. Tor Metrics — Servers. https://metrics.torproject.org/
networksize.html?start=2021-01-01&end=2021-03-01.

https://gitweb.torproject.org/torspec.git/tree/proposals/110-avoid-infinite-circuits.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/110-avoid-infinite-circuits.txt
https://stem.torproject.org/
https://gitlab.torproject.org/legacy/trac/-/issues/25007
https://libevent.org/
https://www.mozilla.org/en-CA/firefox/privacy/products/
https://www.mozilla.org/en-CA/firefox/privacy/products/
https://gitlab.torproject.org/tpo/core/arti/-/blob/541883f3dfb3de25104ade77e3c623e6a6c1a8f4/tor-rtcompat/src/lib.rs
https://gitlab.torproject.org/tpo/core/arti/-/blob/541883f3dfb3de25104ade77e3c623e6a6c1a8f4/tor-rtcompat/src/lib.rs
https://metrics.torproject.org/networksize.html?start=2021-01-01&end=2021-03-01
https://metrics.torproject.org/networksize.html?start=2021-01-01&end=2021-03-01

	Abstract
	1 Introduction
	2 Related Work
	2.1 Tor
	2.2 Tor Routing Performance
	2.3 Tor Network Architecture Changes

	3 Current Tor Relay Architecture
	3.1 Other Relay Components

	4 A Multi-threaded Tor Relay Architecture
	4.1 The Multi-threaded Relay Architecture
	4.2 Building Blocks
	4.3 Connections and Scheduling
	4.4 Extending Circuits and Relaying Data
	4.5 Bandwidth Accounting and Out-of-memory Handling
	4.6 Limitations
	4.7 Summary

	5 Implementation and Evaluation
	5.1 Multi-threaded Relay Implementation
	5.2 Experimental Design
	5.3 Results
	5.4 Discussion

	6 Future Work and Conclusion
	6.1 Security and Privacy
	6.2 Future Work
	6.3 Conclusion

	Acknowledgments
	References

