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Abstract. Remote servers need search terms from the user to com-
plete retrieval requests. However, keeping the search terms private or
confidential without undermining the server’s ability to retrieve the de-
sired information is a problem that private information retrieval (PIR)
schemes are designed to address. A study of the computational practi-
cality of PIR by Sion and Carbunar in 2007 concluded that no exist-
ing construction is as efficient as the trivial PIR scheme — the server
transferring its entire database to the client. While often cited as evi-
dence that PIR is impractical, that paper did not examine multi-server
information-theoretic PIR schemes or recent single-server lattice-based
PIR schemes. In this paper, we report on a performance analysis of a
single-server lattice-based scheme by Aguilar-Melchor and Gaborit, as
well as two multi-server information-theoretic PIR schemes by Chor et
al. and by Goldberg. Using analytical and experimental techniques, we
find the end-to-end response times of these schemes to be one to three

orders of magnitude (10–1000 times) smaller than the trivial scheme for
realistic computation power and network bandwidth. Our results extend
and clarify the conclusions of Sion and Carbunar for multi-server PIR
schemes and single-server PIR schemes that do not rely heavily on num-
ber theory.

1 Introduction

The retrieval of information from a remote database server typically demands
providing the server with clues in the form of data indices, search keywords, or
structured queries to assist with the retrieval task. However, keeping retrieval
clues private without undermining the server’s ability to retrieve the desired
information is a requirement that is common for user-centric privacy-preserving
systems. Private information retrieval (PIR) provides a means of retrieval that
guarantees access privacy, by preventing the database administrator from being
able to learn any information about which particular item was retrieved.

Today’s most developed and deployed privacy-preserving techniques, such
as onion routers and mix networks, are limited to anonymizing the identity of

⋆ An extended version of this paper is available [25].



users. PIR, on the other hand, by protecting the contents of queries, can protect
important application domains like patent databases, pharmaceutical databases,
online censuses, real-time stock quotes, location-based services, online behavioral
analysis for ad networks, and Internet domain registration [3, 14, 18].

Chor et al., in defining the notion of PIR, proved that the trivial PIR scheme

of transferring the entire database to the user and having him retrieve the desired
item locally has optimal communication complexity for information-theoretic
privacy protection with a single server. [7] However, more efficient information-
theoretic solutions with sub-linear communication complexity were shown to ex-
ist if multiple, non-colluding servers hold copies of the database. They proposed
a number of such multi-server information-theoretic PIR schemes [7], including
a simple ℓ-server scheme transferring O(

√
n) bits, where n is the size of the

database in bits and ℓ ≥ 2 is the number of servers. Subsequent work has mostly
focused on improving PIR’s communication complexity bounds [7], while some
others [3, 13, 16] have addressed such problems as using amortization and pre-
processing to reduce server-side computational overheads and improving query
robustness, amongst others.

Chor and Gilboa [8] were the first to relax the absolute privacy offered by
multi-server information-theoretic PIR by using cryptographic primitives. They
proposed a family of 2-server computationally private PIR schemes by mak-
ing intractability assumptions on the existence of pseudorandom generators or
one-way functions. Schemes in this family have a worst-case communication
complexity of O(nǫ), for every ǫ > 0. In the same year (1997), Kushilevitz
and Ostrovsky [19] proposed the first single-server PIR scheme with a similar
communication complexity by assuming quadratic residuosity decisions modulo
a composite of unknown factorization are hard. Thus, the best protection of-
fered by any non-trivial single-server PIR scheme is computational privacy, but
database replication is not required. Several other single-server PIR schemes
followed, each making some intractability assumption [2, 6, 20].

In 2007, Sion and Carbunar [28] considered the practicality of single-server
computational PIR schemes and concluded that PIR would likely remain several
orders of magnitude slower than an entire database transfer — the trivial PIR
scheme — for past, current, and future commodity general-purpose hardware
and networks. They based their result on the cheaper cost of transferring one
bit of data compared to the cost of PIR-processing that bit using modular mul-
tiplication on such hardware. The PIR scheme of Kushilevitz and Ostrovsky,
which was used in their comparison, requires one modular multiplication per
database bit. They projected future increases in computing performance and
network bandwidth using Moore’s Law [21] and Nielsen’s Law [23] respectively,
and argued that improvements in computing performance would not result in
significant improvements in the processing speed of PIR because of the need
to use larger key sizes to maintain security. The significance of this work lies
in establishing that any computational PIR scheme that requires one or more
modular multiplications per database bit cannot be as efficient as the trivial PIR
scheme.



However, it is not clear whether the conclusions of Sion and Carbunar [28]
also apply to multi-server PIR schemes as well as single-server PIR schemes that
do not rely heavily on number theory (i.e., modular multiplications). This is an
important clarification to make because PIR-processing with most multi-server
PIR schemes and some single-server PIR schemes [2, 29] costs much less than
one modular multiplication per database bit. Besides, the projections from [28]
assume that all PIR schemes make intractability assumptions that would ne-
cessitate the use of larger keys when today’s hardware and networks improve.
However, multi-server PIR schemes offering information-theoretic privacy will
continue to guarantee security and privacy without requiring key size changes
irrespective of these improvements.

In this paper, we revisit the computational practicality of PIR in general by
extending and clarifying the results in [28]. First, we provide a detailed perfor-
mance analysis of a recent single-server PIR scheme by Aguilar-Melchor and Ga-
borit [1, 2], which has attempted to reduce the cost of processing each database
bit by using cheaper operations than modular multiplications. Unlike previous
schemes that rely heavily on number theory, this particular scheme is based on
linear algebra, and in particular, lattices. The authors introduced and based the
security of the scheme on the differential hidden lattice problem, which they
show is related to NP-complete coding theory problems [31]. They proposed and
implemented the protocols, but their analysis was limited to server-side com-
putations by the PIR server [1] on a small experimental database consisting of
twelve 3 MB files. It is unclear how well the scheme compares against the trivial
PIR scheme for realistic database sizes. Using the PIR scheme of Kushilevitz and
Ostrovsky and updated parameters from [28], we first reestablished the result
by Sion and Carbunar that this scheme is an order of magnitude more costly
than the trivial PIR scheme. We also provide a new result that shows that the
single-server PIR scheme in [2] offers an order of magnitude smaller response
time compared to the trivial scheme, thus extending the conclusions of Sion and
Carbunar about computational PIR schemes.

Second, we explore the case of multi-server information-theoretic PIR, which
is yet to be considered by any previous study. Considering multi-server PIR is
important because such schemes do not require costly modular arithmetic, and
hence will benefit immensely from advances in computing and network trends.
We derive upper-bound expressions for query round-trip response times for two
multi-server information-theoretic PIR schemes by Chor et al. [7] and by Gold-
berg [16], which is novel to this paper. Through analytical and experimental tech-
niques we find that the end-to-end response times of multi-server PIR schemes
to be two to three orders of magnitude (100–1000 times) smaller than the trivial
scheme for realistic computation powers and network bandwidths.

1.1 Preliminaries

We begin by outlining a few building blocks, some of which are based on [28].
These include the hardware, network bandwidth between the user and the server,
and execution time estimates for modular multiplication.



Table 1. Bandwidth estimates (in Mbps) for 1995 to 2010. We adapted values up to
2007 from [28] and those after 2007 are based on the Internet speed data for Canada
and US from [26].

Network types 1995 1997 1998 1999 2001 2005 2006 2007 2008 2009 2010

End-user(B) .028 .056 .768 1 4 6 6 6 8 9
Ethernet LAN(B2) 10 100 1000 10000 10000 10000 10000 10000 10000
Commercial(B3) .256 .768 1 10 100 1000 1500 1500 1500 1500 1500

Hardware description. All but one of our experiments were performed on
current server hardware with two quad-core 2.50 GHz Intel Xeon E5420 CPUs,
32 GB of 667 MHz DDR2 memory, 6144 KB cache per core, an Adaptec 51645
RAID controller with 16 1.5TB SATA disks, and running Ubuntu Linux 9.10.
The memory bandwidth is 21.344 GB/s and the disk bandwidth is at least
300 MB/s. We note that these machine characteristics are not unusual for
database server hardware; this machine cost less than $8,000. We ran the GPU
implementation of the scheme in [2] on a machine with a Tesla C1060 GPU,
8 GB RAM, 116 MB/s disk bandwidth, and running Ubuntu Linux 9.10.

Network. Three types of network setups were considered [28]: average home-
user last-mile connection, Ethernet LAN, and commercial high-end inter-site
connections. Table 1 shows various network connection speeds (Mbps) since 1995,
when PIR was introduced. The values up until 2006 are reused from [28], while
we provided the subsequent values based on the capacity of today’s network
bandwidths.

Modular multiplication. The work in [28] uses Dhrystone MIPS ratings for
Pentium 4 CPUs in order to estimate tmul, the time it takes to compute a
modular multiplication — the building block for the PIR scheme of Kushilevitz
and Ostrovsky [19]. Such CPUs have long been retired by Intel and are no
longer representative of today’s multi-core CPUs. In addition, the Dhrystone
benchmark, which found widespread usage at the time it was introduced in
1984, is now outdated. According to Dhrystone benchmark author Reinhold
P. Weicker, it can no longer be relied upon as a representative benchmark for
modern CPUs and workloads [30].

Instead, we measure the time directly. Using the key size schedule from
NIST [22], the current recommended key size for the security of the Kushile-
vitz and Ostrovsky scheme is 1536 bits. We experimentally measured the value
of tmul on the server hardware described above. After repeated runs of the mea-
surement code and averaging, we obtained tmul = 3.08± 0.08 µs.

Projections. Moore’s Law [21] has an annual growth rate of 60%, which sur-
passes the 50% growth rate of Nielsen’s Law [23]. While the faster growth rate of
computing capabilities does not necessarily favour computational single-server
PIR schemes, it does favour multi-server information-theoretic PIR schemes.



2 Related Work

The literature has mainly focused on improving the communication complexity
of PIR schemes because communication between the user and the server(s) is
considered to be the most expensive resource [4]. Despite achieving this goal,
other barriers continue to limit realistic deployment of PIR schemes; the most
limiting of these barriers is the computational requirement of PIR schemes. The
performance measure of a scheme in terms of its computational complexity has
only received attention much more recently. The first of these is the work by
Beimel et al. [4] which shows that, given an n-bit database X that is organized
into r b-bit blocks, standard PIR schemes cannot avoid a computation cost that
is linear in the database size because each query for block Xi must necessarily
process all database blocks Xj , j ∈ {1, ..., r}. They introduced a model of PIR
with preprocessing which requires each database to precompute and store some
extra bits of information, which is polynomial in the number of bits n of the
database, before a PIR scheme is run the first time. Subsequently, the databases
can respond to users’ queries in a less computationally expensive manner using
the extra bits. Asonov et al. [3] similarly explores preprocessing with a secure
coprocessor for reducing server-side computation. However, the specialized hard-
ware requirement at the server makes this solution less desirable.

In 2006, panelists from SECURECOMM [10] came together to discuss how
to achieve practical private information retrieval. The discussion covers several
aspects of transitioning cryptographic primitives from theory to practice and the
need for practical PIR implementations and benchmarks on real data. The pan-
elists were optimistic about future PIR deployments and pointed to the need for
finding PIR schemes that require cheaper operations or utilize secure hardware.

The paper by Sion and Carbunar [28] compares the bandwidth cost of trivial
PIR to the computation and bandwidth cost of a single-server computational
PIR scheme [19], which they considered to be the most efficient at that time.
The motivation of [28] was to stimulate practical PIR schemes; nevertheless, the
result has been cited in the literature to promote the general idea that non-
trivial PIR is always more costly than trivial download. Our work extends the
work from [28] in important ways. First, their analysis was based on a number-
theoretic computational PIR scheme [19], whereas we considered different va-
rieties of computational PIR schemes: a number-theoretic scheme [19] and a
lattice-based linear algebra scheme [2]. A consideration of the state of the art
PIR schemes on the basis of their underlying mathematical assumptions is im-
portant because computational performance is currently the most mitigating
factor to the practicality of PIR schemes. Secondly, we extend the analysis of
practicality to multi-server PIR schemes which has never been considered by any
previous measurement study. Multi-server PIR schemes are especially important
because they can offer a stronger privacy guarantee for non-colluding servers, un-
like computational PIR schemes that require large keys to protect against future
powerful adversaries. Besides, multi-server PIR schemes give better performance
and are directly deployable in domains where the databases are naturally dis-
tributed, such as Internet domain name registration [24]. Even in domains where



the database is not distributed, deployment is possible using servers containing
random data [13], which eliminates the need for an organization to replicate its
data to foreign servers.

Aguilar-Melchor and Gaborit [2, 1] explore linear algebra techniques using
lattices to propose an efficient single-server PIR scheme. The security of the
scheme is based on the hardness of the differential hidden lattice problem — a
problem related to NP-complete coding theory problems [31]. Aguilar-Melchor et
al. [1] subsequently used commodity Graphics Processing Units (GPUs), which
are highly parallelizable, to achieve a database processing rate of 2 Gb/s, which
is about ten times faster than running the same PIR scheme on CPUs. That
work makes two main contributions. First, it shows that its scheme exhibits one
order of magnitude speedup by using GPUs instead of CPUs to do the bulk of
the computation, and claims that other schemes will see the same speedup. Sec-
ond, it shows that in GPU-based scenarios, linear algebra based single-server PIR
schemes can be more efficient than trivial download for most realistic bandwidth
situations; this attempts to dispel the conclusions by Sion and Carbunar [28] with
respect to the practicality of single-server PIR schemes. However, the evaluation
from Aguilar-Melchor et al. [1] consider a small experimental database consist-
ing of twelve 3 MB files and they did not measure the total roundtrip response
time for queries; they considered the server-side cost but ignored client-side com-
putation and transfer costs. It is important to consider the total cost because
their scheme is not as efficient in terms of communication complexity as other
existing schemes, and roundtrip response time depends on both the communica-
tion and computational complexities of a scheme. In addition, the measurements
for the single-server PIR schemes [12, 20] used for their comparison was based
on estimates derived from openssl speed rsa, which is quite unlike our approach
where the comparison is based on analytical expressions for query response times
and experimental observations. Besides, they only considered single-server PIR
schemes, whereas we also consider multi-server PIR schemes and the state-of-
the-art single-server PIR schemes.

In the context of keyword search using PIR, Yoshida et al. [32] considered
the practicality of a scheme proposed by Boneh et al. [5]. This public key en-
cryption based keyword search protocol is essentially single-server PIR. Their
investigations found the scheme to be costlier than the trivial PIR solution.

3 Efficient Single-server PIR (LPIR-A)

We experimentally evaluated an implementation of the single-server PIR scheme
by Aguilar-Melchor et al. [1]. This is the most efficient known single-server PIR
scheme, and has available source code both for CPUs and GPUs. We present a
note of caution, however, that although this PIR scheme resists known lattice-
based attacks, it is still relatively new, and its security is not as well understood
as those of the PIR schemes that rely heavily on number theory.

We obtained the source code [17] for this scheme, removed interactivity,
changed the default parameters to one that guarantees security in a practical
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Fig. 1. Logarithmic scale plots for query generation (G), query upload(U), response
encoding (E), response download (R), and response decoding (D) times for the single-
server PIR scheme [1] and the trivial PIR scheme in different bandwidth scenarios.

setting (complexity of over 2100 operations) [2], and added instrumentation to
the CPU and GPU code variants. The data set for our experiment consists of
various databases of sizes between 1 GB and 28 GB, each containing random
data. Bugs in the implementation [17] prevented us from testing larger databases
for the selected security parameters.

We ran queries to retrieve between 5 and 10 random blocks for each database
size.

Figure 1 shows the log-log plots of our results with breakdowns of the time
for query generation and upload, response encoding and download, response
decoding, as well as the trivial download time for the different sizes of databases
we tested. Plots (a), (b), (c), and (d) respectively reflect bandwidth values typical
of an Internet connection in the US and Canada, a 100 Mbps fast Ethernet, a
1 Gbps gigabit Ethernet, and a 100 Mbps fast Ethernet on the GPU hardware.

In plot (a), for example, the largest portion of the overall time is that of query
upload; this is due to the comparatively low 2 Mbps upload bandwidth typical
of a home Internet connection [26]. On the other hand, the time to download
the query result (at 9 Mbps) is much smaller. In general, the response time is
proportional to n and the slope of the line is 1, as the computation costs, in
particular server-side response encoding, dominate. When the database exceeds
the available RAM size, further slowdowns are seen in the results.



The slope of the trivial PIR line is always 1, since the time is simply that
of transferring the entire database. For small databases, the trivial PIR scheme
is faster, but depending on the bandwidth, there is a crossover point at which
sending less data plus computing on every bit of the database becomes faster
than sending the entire database. For the average home connection, for example,
we found this to occur at a very small database size (approximately 32 MB).
For the 1 Gbps connection, the network is so fast that the entire database can
be transferred in less time than it takes for the client to even generate its query,
except for databases of 6 GB and larger. Even then, trivial transfer was much
faster than the overall cost of this PIR scheme for such fast networks.

We note that plot (a) is the most representative of today’s consumer band-
width situation. Based on the recently available Internet speed database [26], the
average bandwidth for the Internet user is improving rather slowly, with average
download rates of 6, 7.79, and 9.23 Mbps for Canada and the US for 2008, 2009,
and January 1 to May 30 of 2010. The average upload rates for the respective
periods are 1.07, 1.69, and 1.94 Mbps. We note that Nielsen’s Law specifically
addresses the type of users described as normal “high-end” who can afford to pay
a premium for high-bandwidth network connections [23]. We contrast these users
from “low-end” users [23] that the above bandwidth averages from the Internet
speed data [26] include. Hence, the majority of Internet users are low-end users,
and their bandwidth is much more limited than that predicted by Nielsen’s Law.

In the plots and in the analysis above, we show changing bandwidths and
assume that computing power stays the same. However, if we assume that pro-
cessors improve at a faster rate than Internet bandwidth for high-end users due
to Moore’s Law and Nielsen’s Law, then the crossover point will move down and
the PIR scheme will become faster at smaller database sizes. From plot (d), the
GPU run gives a better response time, in comparison to plot (b), for memory-
bound databases (about 6 GB or less). For disk-bound databases, the response
time degenerates due to the lower disk bandwidth of the GPU machine. We ran
the same code on the CPU of the GPU hardware; using the GPU, we found
about five times speedup in the server-side processing rate for memory-bound
databases and no noticeable speedup for disk-bound databases. Our observed
speedup is half the speedup reported in [1], but we used much larger databases.

4 Multi-server PIR

In this section, we provide detailed performance analyses of two multi-server
information-theoretic PIR schemes, from Chor et al. [7] and from Goldberg [16].
We begin with an overview of these schemes and later show how they compare
with the single server schemes [2, 19] and the trivial PIR scheme. The reason for
choosing [7] is its simplicity, being the first PIR protocol invented. The reason
for choosing [16] is its comprehensiveness and source code availability which
allows for easy experimental analysis. The implementation of [16], known as
Percy++ [15], is an open-source project on SourceForge.



In order to maintain the user’s privacy, it must be the case that not all
(in the case of the Chor et al. protocol) or at most a configurable threshold
number (in the case of the Goldberg protocol) of the database servers collude to
unmask the user’s query. This is sometimes brought forward as a problematic
requirement of these schemes. We note that, as discussed elsewhere [24], there
are reasonable scenarios — such as distributed databases like DNS or whois
databases, where the copies of the database may be held by competing parties
— in which the non-collusion requirement is acceptable. Further, other privacy-
enhancing technologies, such as anonymous remailers [9] and Tor [11], also make
the assumption that not all of the servers involved are colluding against the user.

4.1 First Scheme (MPIR-C)

We first describe the simple O(
√
n) protocol by Chor et al. The database D is

treated as an r× b matrix of bits, where the kth row of D is the kth block of the
database. Each of ℓ servers stores a copy of D. The client, interested in block i
of the database, picks ℓ random bitstrings ρ1, . . . , ρℓ, each of length r, such that
ρ1⊕· · ·⊕ρℓ = ei, where ei is the string of length r which is 0 everywhere except
at position i, where it is 1. The client sends ρj to server j for each j. Server j
computes Rj = ρj ·D, which is the XOR of those blocks k in the database for
which the kth bit of ρj is 1, and sends Rj back to the client. The client computes
R1⊕· · ·⊕Rℓ = (ρ1 ⊕ · · · ⊕ ρℓ) ·D = ei ·D, which is the ith block of the database.

Sion and Carbunar [28] used a closed-form expression for the computation
and communication cost of the PIR scheme in [19]. While we derive similar
expressions for the multi-server schemes we studied, we note that it will only
approximate the cost because most modern x86 CPUs support hardware-level
parallelism such as superscalar operations; single-cycle operations, such as XORs,
are parallelized even within a single core. Hence, such expressions can be used
to determine an upper bound on what response time to expect. We will later
determine the exact response time for this PIR scheme through experiments.

For optimal performance, we set r = b =
√
n. Hence, the upper bound for the

client and server execution times for this protocol can respectively be computed

as 2(ℓ − 1)
√
n

m
t⊕ + 2ℓ

√
ntt and n

m
· (t⊕ + 2tac) + n · tov, where t⊕ and tt are

respectively the execution times for one XOR operation and the transfer time
for one bit of data between the client and the server; m is the machine word-size
(e.g., 64 bits), n is the database size (in bits), ℓ is the number of servers, tov
represents the amortized server overhead per bit of the database — this overhead
is dominated by disk access costs, but also includes things like the time to execute
looping instructions — and tac denotes the time for one memory access. Note
that the server execution time is the worst-case time because it assumes all the
blocks in the database are XORed, whereas we only need to XOR blocks where
the ith bit of ρj is 1. The expression charges all of the data transfer to the client,
since it needs to be serialized there, whereas the server processing is performed
in parallel among the ℓ servers.

An upper bound on the query round-trip execution time for this multi-server
PIR scheme is then TMPIR−C < (2(ℓ− 1)

√
n/m+n/m) · t⊕+2ℓ

√
n · tt+2n/m ·



tac+n ·tov. The most dominant term is n ·
(

1

m
t⊕ + 2

m
tac + tov

)

, which will suffice
for the entire expression when the value of n is large.

The work in [28] denoted tt =
1

B
, given that B is the bandwidth (in bps) of

the network connection between the client and the server. t⊕ will be one cycle.
(We indeed measured it to be 0.40±0.01 ns, which is exactly as expected on our
2.50 GHz processor.) Similarly, we measured tac to be 1 cycle (0.4000±.0003 ns).
Using unrolling to minimize the overhead of loop instructions, tov will be dom-
inated by the memory bandwidth if the database fits into memory, or by disk
bandwidth otherwise. An upper bound for tov on our test machine is therefore
0.006 ns for in-memory databases and 0.417 ns for disk-bound databases, based
on the numbers in Section 1.1.

4.2 Second Scheme (MPIR-G)

Goldberg’s scheme is similar to the Chor et al. scheme in its use of simple XOR
operations to accomplish most of its server-side computations. However, it uses
Shamir secret sharing [27] to split the user’s query vector ei into ℓ shares which
are then transmitted to the servers. The server database D is treated as an r× b
matrix of w-bit words (i.e., elements of GF (2w)), where again r is the number of
blocks and b is the number of w-bit words per block. In addition, the elements of
ei, ρj , and Rj are elements of GF (2w), instead of single bits. These changes are
necessary because the protocol addresses query robustness for byzantine servers
that may respond incorrectly or not respond at all. For simplicity, in this paper
we will only consider honest servers, which respond correctly. For head-to-head
comparison with the Chor et al. protocol, we set the privacy level t (the number
of servers which can collude without revealing the client’s query) to ℓ − 1. As
before, we choose r = b, but now r = b =

√

n/w. We also choose w = 8 to
simplify the cost of computations; in GF (28), additions are XOR operations on
bytes and multiplications are lookup operations into a 64 KB table. These are
the choices made by the open-source implementation of this protocol [15].

A client encodes a query for database block i by first uniformly choosing
ℓ random distinct non-zero indices α1, . . . , αℓ from GF (28). Next, the client
chooses r polynomials of degree t, one for each block in D. The coefficients of
the non-constant terms for polynomial fk are random elements of GF (28), while
those for the constant terms should be 1 if i = k and 0 otherwise. Afterwards,
the client hands out to each server j a vector ρj formed from evaluating all r
polynomials at αj ; that is, ρj = [f1(αj), . . . , fr(αj)]. (Note that each fk(αj) is
an element of GF (28) — a single byte.) In a manner similar to the Chor et al.
scheme, each server computes a response vector Rj = ρj ·D, where each of the b
elements of vector Rj is also a single byte. The servers send Rj to the client and
the client computes the query result using Lagrange interpolation, which also
amounts to simple arithmetic in GF (28). Using the protocol description in [16]
and the source code [15], we counted each type of operation to derive upper
bounds for the respective client and server execution times as ℓ(ℓ−1)

√

n/8(t⊕+

tac)+2ℓ
√
8ntt+3ℓ(ℓ+1)(t⊕+tac), and (n/8)(t⊕+3tac)+n ·tov, where the terms

are as above. Again, note that we charge all of the communication to the client.
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The upper bound expression for the protocol’s round-trip response time is then

TMPIR−G <
(

(
√

n/8 + 3)ℓ2 − (
√

n/8− 3)ℓ+ n/8
)

(t⊕+3tac)+2ℓ
√
8n·tt+n·tov.

Here, the dominant term is n ·
(

1

8
(t⊕ + 3tac) + tov

)

.

4.3 Response Time Measurement Experiment

We measure the round-trip response times for the multi-server PIR schemes in
this section. We first modified an implementation of MPIR-G (Percy++) [15] to
use wider data types to enable support for larger databases. We then measured
its performance over five different sets of databases, with databases in each set
containing random data and ranging in size from 1 GB to 256 GB.

Next, we fetched 5 to 10 blocks from the server. On the first query, the
database needs to be loaded into memory. The server software does this with
mmap(); the effect is that blocks are read from disk as needed. We expect that the
time to satisfy the first query will thus be noticeably longer than for subsequent
queries (at least for databases that fit into available memory), and indeed that
is what we observe. For databases larger than available memory, we should not
see as much of a difference between the first query and subsequent queries. We
show in Figure 2 plots of the average response time with standard deviations
for these two measurements (i.e., PIR response time for the first query, and for
the second and subsequent queries). From the plot, the speed of 1.36 seconds
per GB of data is consistent until the databases that are at least 16 GB in size
are queried. Between 18 GB and 30 GB, the time per GB grew steadily until
32 GB. The threshold crossed at that range of database sizes is that the database
size becomes larger than the available RAM (somewhat smaller than the total
RAM size of 32 GB). As can be seen from the plot, the measured values for
that range are especially noisy for the lower line. We designed our experiment to
take measurements for more databases with size in that range; we surmise that
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Fig. 3. (a) Comparing the response times of PIR schemes by Kushilevitz and Ostrovsky
(cPIR) [19], Aguilar-Melchor [1] (LPIR-A), Chor et al. [7] (MPIR-C), and Goldberg [16]
(MPIR-G), as well as the trivial PIR scheme over three current network bandwidths
data in Table 1, using different database sizes. The bandwidth used for the non-trivial
PIR schemes is B. (b,c) Plots of response time vs. bandwidth for the PIR schemes as
in (a) for database sizes that fit in RAM (16 GB) and exceed RAM (28 GB).

the particulars of Linux’s page-replacement strategy contribute a large variance
when the database size is very near the available memory size. For even larger
databases, PIR query response times consistently averaged 3.1 seconds per GB
of data. This is because every query now bears the overhead of reading from
the disk. In realistic deployment scenarios where the database fits into available
memory, the overhead of disk reads is irrelevant to individual queries and is
easily apportioned as part of the server’s startup cost. Even when the database
cannot fit in available memory, the bottleneck of disk read overheads could be
somewhat mitigated by overlapping computation and disk reads; we did not
implement this optimization because the current performance was sufficient for
head-to-head comparison with the trivial solution. Note that in practice, the
disk read latency would equally come into play even for trivial PIR.

We made similar measurements for the Chor et al. [7] MPIR-C scheme using
an implemetation we developed. The implementation differed from [15] by doing
XORs in 64-bit words, instead of by bytes. We obtained a speed of 0.5 seconds
per GB (sometimes as fast as 0.26 seconds per GB) for small databases that fit
in available memory and 1.0 seconds per GB for larger databases.



5 Comparing the Trivial and Non-Trivial PIR Schemes

We next compare the round-trip response rates for each of the PIR schemes al-
ready examined to the response rates of the trivial PIR scheme and the Kushile-
vitz and Ostrovsky [19] scheme. We note that for the non-trivial schemes, the
amount of data transmitted is tiny compared to the size of the database, so the
available bandwidth does not make much difference. To be as generous as possi-
ble to the trivial PIR scheme, we measure the non-trivial schemes with the home
connection bandwidth B — 9 Mbps download and 2 Mbps upload. We provide
comparisons to the trivial PIR scheme with bandwidths of B, B2 — 10 Gbps
Ethernet, and B3 — 1.5 Gbps inter-site connections (see Table 1).

Figure 3(a) shows the log-log plot of the response times for the multi-server
and lattice-based PIR schemes against the earlier results from [28], which include
the trivial scheme and the Kushilevitz and Ostrovsky scheme [19]. As in [28], we
give maximal benefit to the scheme in [19] by ignoring all costs except those of
modular multiplication for that scheme, using the value for tmul given in Sec-
tion 1.1. We point out that the values for the trivial scheme and the Kushilevitz
and Ostrovsky scheme are computed lower bounds, while those for the LPIR-A,
MPIR-G, and MPIR-C schemes are experimentally measured. The number of
servers for the multi-server schemes is ℓ = 2.

We can see from the plot that, as reported in [28], the trivial PIR scheme
vastly outperforms the computational PIR scheme of Kushilevitz and Ostrovsky,
even at the typical home bandwidth. However, at that bandwidth, the lattice-
based scheme of Aguilar-Melchor et al. is over 10 times faster than the trivial
scheme. Further, both multi-server schemes are faster than the trivial scheme,
even at the B3 (1.5 Gbps) speeds; the MPIR-G scheme is about 4 times faster for
databases that fit in RAM, and the MPIR-C scheme is over 10 times faster. For
large databases, they are 1.7 and 5 times faster, respectively. Only at B2 Ethernet
speeds of 10 Gbps does the trivial scheme beat the multi-server schemes, and
even then, in-memory databases win for MPIR-C. The apparent advantage of
the trivial scheme even at these very high bandwidths may, even so, be illusory,
as we did not include the time to read the database from memory or disk in the
trivial scheme’s lower-bound cost, but we did for the LPIR and MPIR schemes.

One might try rescuing the trivial PIR scheme by observing that, having
downloaded the data once, the client can perform many queries on it at minimal
extra cost. This may indeed be true in some scenarios. However, if client storage
is limited (such as on smartphones), or if the data is updated frequently, or if
the database server wishes to more closely control the number of queries to the
database — a pay-per-download music store, for example — the trivial scheme
loses this advantage, and possibly even the ability to be used at all.

To better see at what bandwidth the trivial scheme begins to outperform
the others, we plot the response times vs. bandwidth for all five schemes in Fig-
ure 3(b,c). We include one plot for a database of 16 GB, which fits in RAM
(a), and one for 28 GB, which does not (b). We see that the trivial scheme
only outperforms LPIR-A at speeds above about 100 Mbps, and it outperforms
the MPIR schemes only at speeds above 4 Gbps for large databases and above



8 Gbps for small databases. In addition, due to the faster growth rate of com-
puting power as compared to network bandwidth, multi-server PIR schemes will
become even faster over time relative to the trivial scheme, and that will increase
the bandwidth crossover points for all database sizes.

6 Conclusions

We reexamined the computational practicality of PIR following the earlier work
by Sion and Carbunar [28]. Some interpret [28] as saying that no PIR scheme can
be more efficient than the trivial PIR scheme of transmitting the entire database.
While this claim holds for the number-theoretic single-database PIR scheme
in [19] because of its reliance on expensive modular multiplications, it does not
hold for all PIR schemes. We performed an analysis of the recently proposed
lattice-based PIR scheme by Aguilar-Melchor and Gaborit [2] to determine its
comparative benefit over the trivial PIR scheme, and found this scheme to be
an order of magnitude more efficient than trivial PIR for situations that are
most representative of today’s average consumer Internet bandwidth. Next, we
considered two multi-server PIR schemes, using both analytical and experimental
techniques. We found multi-server PIR to be a further one to two orders of
magnitude more efficient. We conclude that many real-world situations that
require privacy protection can obtain some insight from our work in deciding
whether to use existing PIR schemes or the trivial download solution, based on
their computing and networking constraints.
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