
Achieving Efficient Query Privacy

for Location Based Services⋆

Femi Olumofin∗, Piotr K. Tysowski∗∗, Ian Goldberg∗, and Urs Hengartner∗

∗Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1
{fgolumof,iang,uhengart}@cs.uwaterloo.ca

∗∗Department of Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1
pktysows@uwaterloo.ca

Abstract. Mobile smartphone users frequently need to search for nearby
points of interest from a location based service, but in a way that pre-
serves the privacy of the users’ locations. We present a technique for
private information retrieval that allows a user to retrieve information
from a database server without revealing what is actually being retrieved
from the server. We perform the retrieval operation in a computationally
efficient manner to make it practical for resource-constrained hardware
such as smartphones, which have limited processing power, memory, and
wireless bandwidth. In particular, our algorithm makes use of a variable-
sized cloaking region that increases the location privacy of the user at
the cost of additional computation, but maintains the same traffic cost.
Our proposal does not require the use of a trusted third-party compo-
nent, and ensures that we find a good compromise between user privacy
and computational efficiency. We evaluated our approach with a proof-
of-concept implementation over a commercial-grade database of points
of interest. We also measured the performance of our query technique on
a smartphone and wireless network.

Keywords: Location based service, private information retrieval, various-
size grid Hilbert curve

1 Introduction

Users of mobile devices tend to frequently have a need to find Points Of Interest
(POIs), such as restaurants, hotels, or gas stations, in close proximity to their
current locations. Collections of these POIs are typically stored in databases ad-
ministered by Location Based Service (LBS) providers such as Google, Yahoo!,
and Microsoft, and are accessed by the company’s own mobile client applications

⋆ An extended version of this paper is available [27].



or are licensed to third party independent software vendors. A user first estab-
lishes his or her current position on a smartphone such as a RIM BlackBerry,
Apple iPhone, or Google Android device through a positioning technology such
as GPS (Global Positioning System) or cell tower triangulation, and uses it as
the origin for the search. The problem is that if the user’s actual location is
provided as the origin to the LBS, which performs the lookup of the POIs, then
the LBS will learn that location. In addition, a history of locations visited may
be recorded and could potentially be used to target the user with unexpected
content such as local advertisements, or worse, used to track him or her. The
user’s identity may be divulged through the inclusion of the originating dynamic
IP address, e-mail address, or phone number in requests to the LBS server so
that the results of an LBS query can be routed back to the correct user via a
TCP data connection, e-mail reply, or SMS reply, respectively. If a location can
always be correlated to each request, then the user’s current pattern of activ-
ity and even personal safety is being entrusted to a third party, potentially of
unknown origin and intent. Although search engines routinely cache portions of
previous queries in order to deliver more relevant results in the future, we are
concerned when the user’s exact location history is tracked, and not just the key
words used in the search.

For many users, this constitutes an unacceptable violation of privacy, and
efforts should be made to avoid it. As location technology becomes commonplace,
users will become increasingly aware of and concerned about location privacy.
Not only are privacy and personal safety important considerations, but recent
advances in mobile advertising have even opened the possibility of location-based
spam. In February 2010, the Energy and Commerce Joint Subcommittee of the
U.S. House of Representatives held a joint hearing on the implications of location-
based services on the privacy of consumers1. Our challenge has been to design
a system whereby a user can retrieve useful POI information without having
to disclose his or her exact location to a third party such as the LBS server.
The user should also not have to reveal what particular POIs were searched for
and found, as each POI record typically includes precise location coordinates.
Thus, the server will be unable to infer the user’s current location or likely
destination, or accumulate a history of requests made for profiling purposes.
Generally speaking, a user will typically be comfortable with a certain degree of
privacy, meaning that the user could be expected to be anywhere within a certain
geographic area, such as a city or neighbourhood without fear of discovery.

Today’s smartphones have high-performing processors which are suitable for
cryptographic operations that can enable location privacy. For instance, the Ap-
ple iPhone 3GS contains a Samsung ARM 833 MHz CPU, while the BlackBerry
Storm 2 contains a Qualcomm 528 MHz CPU. However, these devices have
limited memory and bandwidth. For instance, the iPhone and Storm are both
limited to 256 MB of dynamic RAM, 32 GB of flash memory, and operate on
3G wireless networks no faster than the (theoretical) 7.2 Mbps HSDPA network.
Consider these data limits with respect to a typical commercial POI database

1 http://energycommerce.house.gov/



for the U.S. and Canada, which can contain 6 to 12 million entries and require 1
to 2 GB or more of flash data storage. Requiring that the smartphone download
the entire database for each request so as not to provide information about its
current location is clearly not practical [31]; nor is requiring that it periodically
download just the updated data to ensure accuracy of results, given the practical
bandwidth limits, data usage limits, and associated overage charges (penalties
for exceeding the limits) of smartphone data plans. Thus, it is desirable to pro-
vide a cryptographic way for a mobile user to request local information while
preserving location privacy. Although extra server-side processing demands must
be anticipated on a privacy-enhanced LBS server, it may easily be scaled to mul-
tiple computers in a distributed fashion, which is a reasonable tradeoff.

1.1 Requirements and Assumptions

Our basic scenario entails a mobile device user who operates a smartphone with
location technology and wireless data transfer capability. The user searches for
nearby POIs (i.e., nearest neighbour) by first constructing and sending a query
to a known LBS server over the wireless network. The LBS server retrieves the
query, performs a search of its POI database, and returns a set of results to the
user containing all POIs found in the specified region. Our protocol must meet
the following requirements:

– The LBS server must not learn the user’s exact location. It may only identify
a general region that is large enough, in terms of area and the number of POIs
it contains, to confer a sufficient level of privacy to the user’s satisfaction.

– There must be no third parties, trusted or otherwise, in the protocol between
the user and the server.

– The implementation must be computationally efficient on hardware, such as
smartphones, which are resource constrained. A user may be expected to
tolerate a delay of no more than several seconds for any kind of query.

– The approach cannot rely on a secure processor that is not typically found
on a commercial smartphone.

Clearly, these requirements present the need for a mechanism to directly
retrieve information in a secure and private way without revealing the contents
of the query results, and without the need for an intermediary between the user
and the database server to provide some kind of a masking function. Fortunately,
there is a branch of cryptography that is associated with retrieving information
from a database without revealing which item is being retrieved; it is known
as Private Information Retrieval (PIR) [7]. Our proposed solution is sufficiently
generic to allow an application to rely on any PIR scheme. We make the same
assumptions as that of the underlying PIR scheme, where retrieval is either by
object index or keyword [6]. We describe a server that can find the relevant POI
entries based on the user’s location of interest included in the request; this is
possible because the entries in the POI database are indexed by their location.

Although PIR satisfies our baseline privacy constraints, current implemen-
tations of it fail to satisfy our third condition, which is usable performance on



modern smartphone hardware. Our challenge has been to complement PIR with
a new algorithmic approach that effectively reduces the amount of computations
without significantly sacrificing the user’s location privacy.

Note that we make no effort to hide the user’s identity from the location-
based service. We assume that it is acceptable to reveal the user’s identity for
the purpose of routing the response to a location-based request, and for offering
a customized LBS experience. A user that also wishes to hide his or her identity
to some extent may wish to make use of an onion router, such as Tor [10].
However, we note that there are application domains where the protection of
a user’s location using our proposed technique is superior to anonymizing the
user’s identity. For example, it is easy to try to identify a user who made a
query with a particular geographical coordinate, simply by looking up the user
who lives at the corresponding residential address and assuming the request did
not originate elsewhere. On the other hand, our proposed technique hides query
contents from the LBS, and leaves no useful clues for determining the user’s
current location.

When a typical mobile phone accesses a third-party LBS provider through
a wireless 3G data connection, we assume that it reveals only its identity and
the query itself to the provider. Unavoidably, a mobile communications carrier
is always aware of the user’s location based on the cell towers in contact, and so
it must not collude with the LBS provider. Our assumption relies on the LBS
provider not being integrated into the carrier’s infrastructure, such as a traffic
reporting service using cell tower data that discovers a user’s location passively.
Our assumption is valid for the vast majority of LBS applications, which are
unaffiliated with the carrier; these include search portals, social applications,
travel guides, and many other types. When communicating with such an ap-
plication, the mobile user’s IP address is of no help in determining the user’s
physical location, as it is dynamically assigned independent of location. Only
a central gateway that is administered by the telecommunications carrier will
be identified. We assume that no other information will be gleaned by the LBS
provider. In the case where a mobile user utilizes Wi-Fi instead, the user will be
assigned an address that points to the nearby access point, however, and may
need to employ other techniques, such as Tor, to mask the address.

1.2 Our Results

We propose a novel hybrid LBS technique that integrates location cloaking and
private information retrieval. We have also implemented and evaluated our pro-
posal to determine its practicality on resource-constrained hardware. The results
show that users can achieve a good compromise between privacy and computa-
tional efficiency with our technique unlike all other existing LBS proposals.

2 Related Work

We provide a brief overview of cloaking- and PIR-based approaches for location
privacy. A survey and classification of methods for location privacy in LBS can



be found in [33]. Similarly, in a position paper in 2008 [11], Ghinita introduced
a taxonomy for LBS privacy techniques.

2.1 Location cloaking techniques

Location cloaking in general seeks to prevent an attacker from being able to
match queries to particular users and to thus compromise their privacy. The
attacker may be in a position to observe traffic flowing through the network or
even be situated at the LBS provider endpoint.

One popular cloaking technique is based on the principle of k -anonymity,
where a user is hidden among k-1 other users. Queries from multiple users are
typically aggregated at an anonymity server which forms an intermediary be-
tween the user and the LBS provider. This central anonymity server can pro-
vide spatial and temporal cloaking functions, so that an attacker will encounter
difficulty matching multiple queries that are observed with users at particular
locations and at particular points in time. Many cloaking solutions for location
privacy suggest either a central anonymity server as described [18, 34], or other
means such as decentralized trusted peers [9] or distributed k -anonymity [35].

The chief problem is that the anonymity server must normally be part of the
trusted computing environment and represents a single point of vulnerability. If
it is successfully attacked, or collusion with the LBS server occurs, then the lo-
cations of all users may be divulged. It is also observed that although a cloaking
technique by itself is advantageous in that it does not result in increased compu-
tational cost on the server, it can carry with it a high communication cost from
the LBS provider to the client. This can mean a large and unacceptable penalty
for mobile phone users. Finally, if a reduced sample population results from the
number of active users in a particular geographic area, it may not suffice to sat-
isfy the desired degree of anonymity. If the anonymity server delays execution of
a request until the k -anonymity condition is satisfied, then this delay may prove
to be unacceptable to the user from a feature interaction point of view.

2.2 PIR-based techniques

A PIR technique can be used to ensure that queries and their results are kept
private. Specifically, PIR provides a user with a way to retrieve an item from
a database, without the database (or the database administrator) learning any
information about which particular item was retrieved. PIR satisfies our require-
ments for privacy and low communication cost. However, existing PIR techniques
have drawbacks of high computational cost for applications that require low la-
tency.

The PIR database is typically organized as an n-bit string, broken up into
r blocks, each n/r bits long. The user’s private input or query is typically an
index i ∈ {1, ..., r} representing the ith block of bits. A trivial solution for PIR
is for the database to send all r blocks to the user and have the user select the
desired block at index i, but this carries a maximum cost of communication and
is unsuitable in a resource-constrained environment such as a wireless network.



When the PIR problem was first introduced in 1995 [7], it was proven that
a single-database solution with information theoretic privacy and a sub-linear
communication complexity (between the user and the database) is impossible
to achieve. Information theoretic privacy assures user privacy even for an ad-
versary with unlimited computational capability. Using at least two replicated
databases, and some form of restrictions on how the databases can communicate,
PIR schemes with information theoretic privacy are possible, and sometimes hold
attractive properties like byzantine robustness [3, 15]. The first single-database
PIR proposal was in 1997 [5]; its PIR scheme only assures privacy against an
adversary with limited computational capability (i.e., polynomially bounded at-
tackers). The type of privacy protection known as computational privacy, where
computational capability is expected to be limited, is a weaker notion of pri-
vacy compared to information theoretic privacy. Nonetheless, computational PIR
(CPIR) [5, 22] offers the benefit of fielding a single database. Basic PIR schemes
place no restriction on information leaked about other items in the database
that are not of interest to the user; however, an extension of PIR, known as
Symmetric PIR (SPIR) [24], adds that restriction. The restriction is important
in situations where the database privacy is equally of concern. The only work in
an LBS context that attempts to address both user and database privacy is [12].
Although, not strictly an SPIR scheme, it adopts a cryptographic technique to
determine if a location is enclosed inside a rectangular cloaking region. The goal
of the paper was to reduce the amount of POIs returned to the user by a query.
Unlike ours, the approach fails to guarantee a constant query result size which
defeats correlation attacks, and it requires dynamic partitioning of the search
space which may be computationally intensive. It also requires two queries to be
executed, whereas a single query-response pair is sufficient in ours.

PIR has been applied to solving the problem of keeping a user’s location pri-
vate when retrieving location-based content from a PIR database. This content
typically consists of points of interest (POI’s), with each entry consisting of a
description of a place of interest as well as its geographical location. The only
work cited for PIR in the survey from [33] which does not utilize a third party
is [13]. Our approach differs from the PIR approach in [13] in three important
ways. First, the approach is specifically based on the 1997 computational PIR
scheme by Kushilevitz et al. [22]. It would require considerable re-invention be-
fore it could be used with recent and more efficient PIR schemes. For instance,
it re-organizes a POI database into a square matrix M despite the reduced com-
munications costs attainable from using a rectangular matrix.

On the other hand, our approach is flexible and supports any block-based
PIR schemes. Secondly, the costs of computation and communication with the
approach are O(n) and O(

√
n), respectively, where n is the number of items, or

POIs, in the database. The user has no flexibility for dealing with this linear
computational cost for large n and it reveals too many POIs to the user; it is
too costly for low-bandwidth devices. Our hybrid technique departs from this
one-size-fits-all approach and enables users to negotiate their desired level of
privacy and efficiency with LBS providers. Thirdly, the scope of the approach



did not consider a privacy-preserving partitioning approach for the data set.
It considers partitioning with kd-tree and R-tree in the general sense, without
specific privacy considerations (see Section 4.2 in [13]). On the other hand, we
will show how to use a different method of partitioning of POI data that permits
cloaking, and offers privacy protection when used in conjunction with PIR.

Most of the PIR-based approaches for location privacy rely on hardware-
based techniques, which typically utilize a secure coprocessor (SC) at the LBS
server host [1, 19]. This hardware creates a computing space that is protected
from the LBS, to realize query privacy. A major drawback of SC-based PIR
is that it requires the acquisition of specialized tamperproof hardware and it
usually requires periodic reshuffling of the POIs in the database, which is a
computationally expensive operation [1, 20].

2.3 Hybrid techniques

Hybrid techniques [11] permit privacy-efficiency tradeoff decisions to be made
by combining the benefits of cloaking- and PIR-based techniques. Chor et al. [8]
conjectured a tradeoff between privacy and computational overhead as a means
of reducing the high computational overhead for some application areas of PIR.
Our work concretizes and validates their conjecture in the context of LBS, and
also realizes the future work left open in [11], which is to further reduce the
performance overhead of PIR techniques. The authors’ own optimization of PIR
in [13] (paper previously mentioned above) reuses partial computation results
(i.e., multiplications of large numbers) and parallelizes the computations. This
optimization reduces CPU cost by 40%, but the overall query response time
is still impractical [23, 29]. Ghinita [11] suggests improving the performance of
PIR-based techniques for LBS privacy through a hybrid method that includes a
PIR phase on a restricted subset of the data space. Our work answers the open
question of how to reduce the processing cost of PIR, without requiring the LBS
to have multiple CPUs to take advantage of parallelization. Parallel processors
are not typically found on smartphones, either.

3 Our tradeoff solution

We have developed a hybrid solution that consists of PIR to achieve query pri-
vacy in the context of a location-based service, and a cloaking technique to
reduce the computational cost of PIR to a feasible level. Our technique essen-
tially describes how the user creates a cloaking region around his or her true
location, and performs a PIR query on the contents of the cloaking region only.
The benefits are numerous: the user’s location is kept hidden from the server to
an acceptable degree regardless of the number of other users in the area; there is
no intermediary server that is responsible for cloaking and that would need to be
trusted; and the computational cost of the cryptographic algorithms employed
is still practical. We ensure that the user downloads only the POIs that are of



interest to the smartphone, keeping wireless traffic to a minimum to reduce costs
and conserve the battery. We describe our solution in this section.

The approach that we propose entails two phases. First, there is a pre-
processing phase in which the system is set up for use. The pre-processing
operation must be carried out whenever significant changes are made to the
POI database on the server. In practice, it can occur every few months during
a period of low usage on the server such as nighttime maintenance activities.
Second, there is an execution phase, in which the LBS server responds to queries
for POIs from users. At a high level, the pre-processing phase consists of the
following steps:

1. A geographic region is projected onto a two-dimensional plane.
2. A suitable grid is formed on the plane.
3. A collection of POIs is saved in a database such that each row corresponds

to one POI.
4. Each cell of the grid is mapped to a portion of the database, i.e., a particular

set of database rows (each containing a POI).
5. The grid structure is transmitted and saved on the client device in a local

mapping database so that it can be referenced in a subsequent query.

The execution phase, in which a query is made for a set of nearby POIs,
consists of the following steps:

1. The user determines the area of interest, either based on the current physical
position as determined through GPS, or some other arbitrary area that the
user may be traveling to in the future.

2. The user chooses a desirable level of privacy.
3. The client creates a cloaking region corresponding to this level of privacy,

which will enclose the area of interest.
4. The client sends the cloaking region to the server. Also, the client identifies

which portion of the cloaking region contains the area of interest, in a way
that is hidden from the server.

5. The server receives the request, and finds the database portion corresponding
to the cloaking region. A block of rows is retrieved from this portion based
on the user’s specified location of interest. The POIs present in these rows
are transmitted back to the client.

6. The client decodes the result, and automatically finds the nearest neighbour
POI, or presents the full list of POIs returned to the user to choose amongst.

3.1 Level of privacy for the PIR query

To defeat a server’s ability to narrow down the search space for the item of
interest to the user, PIR protocols typically process every item, or POI, in the
PIR database. This results in a computational complexity that is linear in n
(where n is the number of items in the PIR database). This is the main hindrance
to practical PIR deployment [31].



We propose a tradeoff, in the tradition of PIR development over the years, to
make PIR-based solutions practical. For example, information theoretic privacy
necessitates replacing a single database with at least two replicated databases;
another option is to compromise information theoretic privacy for lower privacy
(i.e., attain computational privacy). Our proposal is to offer users the choice
of trading off privacy for better query performance, by specifying the levels
of privacy that they want for their queries. A level of privacy for the query
determines the number of items that the PIR server must process in order to
provide a response. Setting levels of privacy is a common practice in several
domains where privacy is important (e.g., web browsers). In the specific case
of location privacy, we argue that resource-constrained device users are willing
to trade off privacy to obtain reasonable performance. On the other hand, such
users are equally willing to trade off some levels of performance to gain some
levels of privacy support.

A user sets the desired privacy level by specifying the size of the cloaking
region. The ratio of the number of POIs inside this region to the number of
POIs in the entire POI database defines the level of privacy. The privacy level
can be specified in terms of cities/towns (city level), states/provinces (provincial
level), and so on, to enhance user-friendliness. Thus, a privacy level value of 1
indicates that the user desires query privacy at the same level as that offered by
a typical PIR protocol. Similarly, if a user sets the query privacy level to 0.6,
the PIR query will execute faster. Although the cost is still linear in the number
of items in terms of computational complexity, the constant term is modified
(i.e. in terms of Big-O notation), leading to significant performance gains. At
the same time, it will be disclosed to the server that a particular amount of
0.4n items are not of interest to the user; this leakage of information does not
necessarily constitute a significant breach of location privacy.

The cloaking region is thus identified as a subset of the entire world described
by the database. If we imagine that the world is mapped as a grid of so-called
geographic grid cells that are equally distributed, then one of these cells will
be chosen to comprise the cloaking region. If a higher privacy level is desired,
then the cloaking region may be expanded to include multiple geographic grid
cells, and thus a larger portion of the database that describes the world. It is
sufficient to identify each grid cell by its cell number if the mapping is static and
published. The process of mapping the world to a geographic grid occurs during
the pre-processing phase, described next.

3.2 Pre-processing and location cloaking

The first step in the pre-processing phase is to represent a geographic area such as
the United States and Canada on a two-dimensional plane using a map projection
method such as the commonly used Miller cylindrical projection [32]. Once that
is done, the user’s location of interest may be found on this plane. It is necessary
to obscure the user’s location by creating a cloaking area around the user’s true
position or area of interest. POIs will be found anywhere by the LBS server
within this cloaking region. The region must be sufficiently large in order to



(a) (b)

Fig. 1. (a) A Various-size-grid Hilbert Curve (VHC) mapping with uniform POI den-
sity. (b) A user’s true position inside VHC cell 25 (shaded) and within a cloaking region
bounded by the single geographical grid cell 2. The POI results for VHC cell 25 only
will be returned in a query. If a larger cloaking region consisting of geographic grid
cells 1 to 4 was specified (for privacy), the same POI results would still be returned.

achieve sufficient privacy for the user, but at the same time it must be sufficiently
small to minimize the amount of computation required on the user’s mobile
device to process the query results, as well as to constrain the amount of wireless
data traffic required to transport them.

Several techniques allow POIs to be mapped to a cloaking region. One tech-
nique is quad-tree mapping [18], but it has the disadvantage (from its use in
Casper [25]) of forming an unnecessarily large cloaking region which can im-
pair performance [2]. Another technique is called VHC (Various-size-grid Hilbert
Curve) mapping [28], which suits our purpose. In particular, it solves the prob-
lem of the density of POIs varying by geographic area. If the density of POIs is
significantly higher for a given region (such as a city), then a higher data traffic
cost will result if the size of the cloaking region remains constant, and the query
will be much slower. If on the other hand, the density becomes significantly lower
(such as in a sparsely populated region like the countryside), then the result size
may be so minimal that the server may guess the user’s likely destination with
a high degree of confidence, leading to loss of privacy. VHC solves this problem
by creating variable-sized regions that can be used for cloaking, based on the
density of the POIs in the geographic area.

Essentially, in VHC, the two-dimensional geographic grid is mapped to a one-
dimensional space such that it has equal POI density everywhere (see Fig. 1a).
Assume that a typical POI database that covers the regions of Canada and the
U.S. will have 6 million POIs. If each VHC cell must contain the same number
of POIs, such as 60, then there will be a total of 100,000 VHC cells that will
cover this geographic region. Suppose that the lowest POI density found in the
database is 60 POIs per 40,000 km2. Thus, the maximum size of a VHC cell will
be 40,000 km2.



Now, we create a geographic grid overlaying the U.S. and Canada regions
with fixed-size square cells that are 200 km in length (the area of each is 40,000
km2). This corresponds to the maximum size of a single VHC cell as described
above. Each geographic grid cell, however, may contain any number of smaller-
sized VHC cells if the POI density of the region is greater (see Fig. 1b).

Finally, the client determines a cloaking region based on a particular privacy
level which will dictate the number of geographic grid cells to include inside
the cloaking region. Suppose that the client chooses a privacy level such that the
cloaking region consists of four geographic grid cells. The user’s true location is in
one of these grid cells. Inside of the geographic grid cell, there is a set of variable-
sized VHC cells according to the distribution of the POIs in the geographic grid
cell. The user’s area of interest, in which POIs will be searched, will be the single
current VHC cell found inside the geographic grid cell. The number of POIs per
VHC cell is known, and in our case, it is 60. Thus, the user will initiate a request
that will reference the cloaking region, as well as the specific VHC cell in which
the user is located or interested in. The user will receive a set of 60 POIs that
are found in his or her current VHC cell only. The server will only know that
the location of interest is somewhere within the cloaking region defined by the
geographic grid cells.

The geographic grid is useful in specifying the size of the cloaking region
and for identifying which VHC cells will comprise the cloaking region. The level
of privacy, defined from 0 to 1, establishes the size of the cloaking region. The
client then sends this cloaking region to the server, by identifying the bounding
coordinates (i.e., the longitude and latitude of the top-left and bottom-right
corners). The server will then be able to identify which VHC cells belong to this
cloaking region, and therefore which portion of the database must be read. The
client must also encode the VHC cell containing the area of interest inside a PIR
query. (Each VHC cell in the system is uniquely identified by a numeric value.)
Fig. 2 further illustrates the relationships among a geographical grid, VHC cells
and POIs.

Thus, our cloaking technique provides a way of reducing the search space of
the POI database by employing multiple levels of database segmentation. The
cloaking region itself is described as a single, or multiple, geographic grid cell or
cells. Inside each geographic grid cell are found one or multiple VHC cells, the
number depending on the POI density. The user’s true location is inside one of
these VHC cells, and the user retrieves POI’s corresponding to that VHC cell
only. As far as the LBS server is concerned, though, the user could be located
anywhere within the larger geographic grid cell.

The geographic grid is fixed. The initial grid cell dimensions are configured
based on the maximum size of each VHC cell, but once established, will not need
to change. Both the client and server must have the same knowledge of the geo-
graphic grid. It can be distributed offline (along with the software for the user’s
smartphone). A simple approach to determining grid cell dimensions is to use
a geographic coordinate system such as Degrees-Minutes-Seconds (DMS) [21].
For instance, each grid cell may be two latitude degrees in length, which roughly



...

...

...

...

POI 1 POI 2 POI 60...

POI 61 POI 62 POI 120...

POI 180...

POI 240...

POI 300...

POI 360...

POI 420...

POI 480...

POI 121

POI 181

POI 241

POI 301

POI 361

POI 421

POI 122

POI 182

POI 242

POI 302

POI 362

POI 422

VHC cell 1

VHC cell 2

VHC cell 3

VHC cell 4

VHC cell 5

VHC cell 6

VHC cell 7

VHC cell 8

...

Geo cell 1

Geo cell 2

Fig. 2. Illustration of the relationship between geographical grid cells, VHC cells, and
POIs as stored in database rows.

equates to 200 km at the 30 degree latitude. A population of tens of thousands
to millions of users may typically inhabit and stay within the bounds of a grid
cell that is 200 km2 in size, leading to excellent privacy. Cells of larger size will
afford province- and state-level privacy if desired.

Both the client and server must agree on the same VHC mapping, and this
mapping must be done off-line in advance. Because it is dependent on population
density, it will remain relatively static over time even as the population grows,
and can be dynamically updated on the client if necessary. In order to contain
knowledge of the mapping to define the cloaking region, the user may make use
of a pre-computed map file that is stored locally on the device. This mapping
technique is a replacement for a cloaking region that is simply based on cells of
constant size, and ensures that a constant and predictable number of results are
returned for the user’s grid cell.

The idea of using VHC to address the general problem of location privacy
was proposed in [28], but in a way that is very different from ours. Specifically,
VHC was used to map the user’s current location to a 1-dimensional space. Ran-
dom perturbation was then applied on the 1-dimensional value, which was then
mapped back to 2-dimensional space according to the VHC mapping, to repre-
sent the user’s true location. In essence, the random perturbation was applied
to create confusion for an attacker about the user’s true location. Our technique
differs in that VHC is used for a different purpose; it defines the storage of POI
entries of interest within a geographic cell, which comprises the cloaking region,
in a way that allows proximate POIs to be stored as adjacent database entries.
We then utilize this cloaking region within the context of a privacy-preserving
PIR protocol. We do not perform perturbation of the location, which we argue
would result in decreased privacy. Indeed, a non-stationary user whose true loca-
tion is randomly perturbed is still subject to correlation attack. In our approach,
we will demonstrate that the cost of computational and communication overhead
through our use of PIR is acceptable, as we provide a method for retrieving only
a subset of entries of the entire POI database for each query. Our technique is
also impervious to correlation attacks.

The device must store a copy of the VHC map in local non-volatile memory,
but the storage requirements are very reasonable. The current geographic grid
cell encapsulating the user can be derived from the user’s current latitude and



longitude coordinate, if the mapping convention is known. A single coordinate
for the intersection point of each VHC cell inside (i.e. one of its corners) can then
be recorded. Hence, a single coordinate would suffice to store each VHC cell in
device memory. For quick lookup and to minimize storage requirements, the
coordinates of all VHC cells only in the current geographic cell could be stored.
Assuming that the smallest VHC cell size is 1 km2 in size, then the worst case
is that 40,000 coordinates will need to be stored to account for all VHC’s. Two
bytes will be sufficient to store each VHC coordinate, because the origin of the
geographic grid cell is known, so that the total cost will be approximately 80,000
bytes to store all VHC cells. This is the worst theoretical case; in practice, small
VHC cells will only be encountered in very dense metropolitan areas, and they
will not occupy an entire geographic cell.

3.3 Variable level of privacy

The size of the cloaking region and the performance of a query depend on the
user’s specified level of privacy. If the user wishes to obtain a higher level of
privacy, then the size of the cloaking region can be defined to be larger, and to
encompass a larger number of geographic grid cells (and thus VHC cells), but
the amount of computation on the server will increase accordingly, delaying the
response. Nevertheless, the chief benefit is that the processing time of the query
on the server is predictable, because each VHC cell in each request contains the
same number of POIs. The key fact is that the amount of data transmitted will
be roughly proportional to the number of POIs in a single VHC cell (depend-
ing on the details of the PIR scheme being employed), but the server will only
learn the client’s location to the resolution of the cloaking region. The amount
of variation allowed in the size of the cloaking region should be kept to a min-
imum, as this variable may be used to form part of a fingerprint of a target in
a correlation attack. Allowing a one-cell or two-by-two-cell region only may be
a good compromise. The latter could be employed by the user on a permanent
basis to avoid the threat of inter-cell movement being discovered.

Our proposed algorithms for privacy-preserving queries, which allow the user
to specify a level of privacy, are explained in detail in the extended version of
this paper [27].

4 Experimental evaluation

4.1 Implementations

We developed a C++ prototype and a Java prototype for our proposal using
two available implementations of the PIR protocol. The evaluation of our ap-
proach in terms of feasibility and scalability is based on the C++ prototype.
The point of the Java prototype is to demonstrate the successful porting of our
implementation to a smartphone platform. We did not intend to compare these
implementations or run them with the same set of parameters.



The C++ prototype is based on Percy++, an open source PIR protocol
written in C++ [14, 15]. The Percy implementation offers computational, in-
formation theoretic and hybrid (a mix of both) PIR. We modified Percy++ to
support our proposal for allowing PIR queries to be based on a database portion
defined by the cloaking region and added code for instrumentation. We mea-
sured the computational performance of the PIR algorithm when it does take
into account the query level of privacy, and when it does not take it into ac-
count. We ran the PIR implementation against a database of 6 million synthetic
POIs, the typical number of POIs in a commercial POI database for the U.S.
and Canada [16, 17]. We note that a similar experiment in [13] considers a much
smaller database; only 10,000 and 100,000 POIs. A head-to-head comparison
with [13] is infeasible because we used different PIR implementations and test
data. Each POI consists of 256 bytes that we generated randomly. Again, this
size is a conservative representation of practical POI sizes. In comparison, the
POIs from [13] are only 64 bits in length. The (x, y) location coordinates are
stored with each POI.

The Java prototype is based on a computational SPIR protocol implemen-
tation [30]. This SPIR protocol was derived from the oblivious transfer protocol
by Naor and Pinkas [26] and is the only publicly available Java implementa-
tion to our knowledge. This second prototype development consists of both a
server component and a client component that we deployed on a smartphone
platform. Specifically, we ported the implementation from [30] to Google’s An-
droid smartphone platform, which supports the Java programming language.
The only aspect of the implementation that could not be adapted without light
modification was the RMI mechanism, which we replaced with HTTP socket
communication between the Android client process and a server process running
on a desktop computer.

4.2 Results and Discussion

We measured query roundtrip times for the C++ prototype on a machine with
a 2.91 GHz dual-core AMD CPU, 3GB RAM, and running Ubuntu Linux. Since
the Percy++ PIR uses replicated databases, we set the number of databases
to 2 [15]. Fig. 3 shows query roundtrip times and levels of privacy for queries
returning various numbers of POIs. The number of POIs returned for each query
is equivalent to the number of POIs in a VHC cell. Similarly, the number of
POIs returned by a query is equivalent of the number of blocks (in bytes), that
a traditional PIR query returns. A block of 10 POIs is equivalent to 2560 bytes
of data (each POI consists of 256 bytes).

The query roundtrip or response times for block sizes 5, 10, 25, 50, 100, 250,
and 500, at query level of privacy 1, are between 25 and 70 seconds. This is
because each PIR request runs against the entire database of 6 million synthetic
POIs. However, the query roundtrip time improves with lower levels of privacy.
For example, the query response times for the above block sizes at a privacy level
of 0.17 are between 4 and 12 seconds. One must observe that setting the query
level of privacy to 0.17 is equivalent to privately querying a block of POIs from



70

5 10 25 50 100 250 500POIs /block

60

Q
u

e
ry

 R
o

u
n

d
tr

ip
 t

im
e

 (
se

co
n

d
s)

50
Q

u
e

ry
 R

o
u

n
d

tr
ip

 t
im

e
 (

se
co

n
d

s)

30

40

Q
u

e
ry

 R
o

u
n

d
tr

ip
 t

im
e

 (
se

co
n

d
s)

20

30

Q
u

e
ry

 R
o

u
n

d
tr

ip
 t

im
e

 (
se

co
n

d
s)

10

20

Q
u

e
ry

 R
o

u
n

d
tr

ip
 t

im
e

 (
se

co
n

d
s)

0

0.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89 0.970.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89 0.97

Level of Privacy ρ

Fig. 3. Query roundtrip time and level of privacy for various numbers of POIs returned
per query. A single measurement was taken per data point.

a portion of the database consisting of 1.02 million POIs. If we assume there
are equal number of POIs in all the provinces and states of Canada and US, a
level of privacy set to 0.17 implies a cloaking region that covers approximately
10 provinces and/or states. Under a similar assumption, a user who intends to
hide his or her query in a cloaking region consisting of one province or state will
simply set his or her query level of privacy to a much lower value of 0.02. The
query response time for this level of privacy is approximately 0.3 seconds for
an optimal block size, which in our testing configuration consists of 256 POIs.
It is easy to observe from the graph that the block that consists of 250 POIs
gives the best performance. Furthermore, the worst performing block size is the
one consisting of 5 POIs, the reason being that smaller block sizes require more
rounds of computations to process the individual blocks, compared to larger
block sizes. On the other hand, large block sizes, such as 500, carry performance
penalties and overheads which depend on the characteristics of the underlying
PIR scheme, and also on the resource constraints of the runtime hardware (e.g.,
RAM, disk and memory cache sizes, and network bandwidth). The network cost
in the C++ implementation was negligible since the measurements were taken
on a LAN.

We also installed the client for the Java prototype on a G1 Android smart-
phone from T-Mobile, which features a Qualcomm ARM processor running at
528 MHz, and includes 192 MB DDR SDRAM, and 256 MB flash memory. Al-
though our locked smartphone was capable of running on T-Mobile’s 3G network
in the U.S., it did not support the 3G frequency bands in operation in Canada.
We ran our tests using the Rogers EDGE network, which is slower by up to
a factor of ten. We created an Android application with a user interface that
allows the user to specify the server address and query parameters such as the



size of the cloaking region and the size of the portion of the cloaking region to
fetch. We observed that when the cloaking region was reduced to a quarter of
its original size (i.e. a quarter of the POIs were returned), the query generation
became 2.15 times slower, but the roundtrip time became 3.32 times quicker.
Overall, the implementation was usable even though it had not been originally
designed and optimized for the Android platform, and we were restricted to a
non-3G network. Further details of our implementation are available in [27].

4.3 Privacy and size of the cloaking region

Our solution preserves the privacy of the user’s location irrespective of the num-
ber of other users initiating queries for the same location. The server can infer
only the user’s location based on the cloaking region. The user may adjust the
size of the cloaking region based on his or her personal preferences (i.e., the
desired level of privacy, query performance, and cost), because a larger region
will entail more computation.

The size of the cloaking region is based on a particular size of geographic area
and does not need to be adjusted based on the known distribution of POIs within
the region. The user only establishes a reasonable level of privacy based on the
number of geographic grid cells that define a geographic area. The boundary of
the cloaking region utilized in a request is established by the user and is based
on the geographic cell map contained on the user’s end and the level of privacy
parameter. The size of the cloaking region and its boundaries are not controlled
by the server.

5 Conclusions

In this paper, we have proposed an algorithm for private information retrieval
that achieves a good compromise between user location privacy and computa-
tional efficiency. We have implemented and evaluated our algorithm and shown
that it is practical on resource-constrained hardware. Our approach of using a
variable-sized cloaking region divided into VHC cells results in greater location
privacy than the traditional approach of a single cloaking region, while at the
same time decreasing wireless data traffic usage from an amount proportional
to the size of the cloaking region to an amount proportional to the size of a
VHC cell. It also allows the user to dynamically choose various levels of privacy.
Although increasing the size of the cloaking region does result in higher compu-
tation in processing the query, we believe that this tradeoff is very reasonable,
given that the processing power of today’s smartphones is still less of a concern
than the speed and cost of wireless network connectivity.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments for
improving this paper. We also gratefully acknowledge NSERC and MITACS for
funding this research.



References

1. H. S.-M. Ali Khoshgozaran and C. Shahabi. SPIRAL, a scalable private informa-
tion retrieval approach to location privacy. In Proceedings of the 2nd International
Workshop on Privacy-Aware Location-based Mobile Services (PALMS), 2008.

2. B. Bamba, L. Liu, P. Pesti, and T. Wang. Supporting anonymous location queries
in mobile environments with privacygrid. In Proceeding of the 17th international
conference on World Wide Web, pages 237–246, New York, NY, USA, 2008.

3. A. Beimel and Y. Stahl. Robust information-theoretic private information retrieval.
J. Cryptol., 20(3):295–321, 2007.

4. C. Bettini, S. Jajodia, P. Samarati, and X. S. Wang, editors. Proceedings of the
1st International Workshop on Privacy in Location-Based Applications, Malaga,
Spain, October 9, 2008, volume 397 of CEUR Workshop Proceedings, 2008.

5. B. Chor and N. Gilboa. Computationally private information retrieval (extended
abstract). In STOC ’97: Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing, pages 304–313, New York, NY, USA, 1997.

6. B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords.
Technical Report TR CS0917, Dept. of Computer Science, Technion, Israel, 1997.

7. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In Proceedings of the 36th Annual Symposium on the Foundations of Computer
Science, 1995, pages 41–50, Oct 1995.

8. B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval.
J. ACM, 45(6):965–981, 1998.

9. C. Chow, M. F. Mokbel, and X. Liu. A peer-to-peer spatial cloaking algorithm
for anonymous location-based service. In Proceedings of the 14th Annual ACM
international Symposium on Advances in Geographic information Systems, pages
171–178, New York, NY, USA, 2006.

10. R. Dingledine, N. Mathewson, and P. Syverson. Tor: the second-generation onion
router. In SSYM’04: Proceedings of the 13th conference on USENIX Security Sym-
posium, pages 21–21, Berkeley, CA, USA, 2004.

11. G. Ghinita. Understanding the privacy-efficiency trade-off in location based
queries. In SPRINGL ’08: Proceedings of the SIGSPATIAL ACM GIS 2008 In-
ternational Workshop on Security and Privacy in GIS and LBS, pages 1–5, New
York, NY, USA, 2008.

12. G. Ghinita, P. Kalnis, M. Kantarcioglu, and E. Bertino. A hybrid technique for
private location-based queries with database protection. In SSTD ’09: Proceed-
ings of the 11th International Symposium on Advances in Spatial and Temporal
Databases, pages 98–116, Berlin, Heidelberg, 2009. Springer-Verlag.

13. G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan. Private
queries in location based services: anonymizers are not necessary. In SIGMOD ’08:
Proceedings of the 2008 ACM SIGMOD international conference on Management
of data, pages 121–132, New York, NY, USA, 2008.

14. I. Goldberg. Percy++ project on SourceForge. http://percy.sourceforge.net/.
15. I. Goldberg. Improving the robustness of private information retrieval. In SP ’07:

Proceedings of the 2007 IEEE Symposium on Security and Privacy, pages 131–148,
Washington, DC, USA, 2007.

16. GPSmagazine. Garmin nuvi 780 GPS Review. http://gpsmagazine.com.
17. GPSreview.net. POI– Points of Interest. http://www.gpsreview.net/pois/.
18. M. Gruteser and D. Grunwald. Anonymous usage of location-based services

through spatial and temporal cloaking. In MobiSys ’03: Proceedings of the 1st



international conference on Mobile systems, applications and services, pages 31–
42, New York, NY, USA, 2003.

19. U. Hengartner. Hiding location information from location-based services. In Mobile
Data Management, 2007 International Conference on, pages 268–272, May 2007.

20. A. Iliev and S. W. Smith. Protecting Client Privacy with Trusted Computing at
the Server. IEEE Security and Privacy, 3(2):20–28, 2005.

21. M. Kennedy and S. Kopp. Understanding Map Projections. ESRI (Environmental
Systems Research Institute) press, 2000.

22. E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In FOCS ’97: Proceedings of the
38th Annual Symposium on Foundations of Computer Science, page 364, Wash-
ington, DC, USA, 1997.

23. D. Lin, E. Bertino, R. Cheng, and S. Prabhakar. Position transformation: a location
privacy protection method for moving objects. In SPRINGL ’08: Proceedings of the
SIGSPATIAL ACM GIS 2008 International Workshop on Security and Privacy in
GIS and LBS, pages 62–71, New York, NY, USA, 2008.

24. S. K. Mishra and P. Sarkar. Symmetrically private information retrieval. In IN-
DOCRYPT ’00: Proceedings of the First International Conference on Progress in
Cryptology, pages 225–236, London, UK, 2000.

25. M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new Casper: query processing
for location services without compromising privacy. In VLDB ’06: Proceedings of
the 32nd international conference on Very large data bases, pages 763–774, 2006.

26. M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In STOC
’99: Proceedings of the thirty-first annual ACM symposium on Theory of computing,
pages 245–254, New York, NY, USA, 1999.

27. F. Olumofin, P. K. Tysowski, I. Goldberg, and U. Hengartner. Achieving Efficient
Query Privacy for Location Based Services. Technical report, CACR 2009-22,
University of Waterloo, 2009.

28. A. Pingley, W. Yu, N. Zhang, X. Fu, and W. Zhao. CAP: A Context-Aware Pri-
vacy Protection System For Location-Based Services. In 29th IEEE International
Conference on Distributed Computing Systems, Jun 2009.

29. D. Riboni, L. Pareschi, and C. Bettini. Privacy in georeferenced context-aware
services: A survey. In Bettini et al. [4].

30. F. Saint-Jean. Java implementation of a single-database computationally
symmetric private information retrieval (CSPIR) protocol. Technical Report
YALEU/DCS/TR-1333A, Yale University, New Haven, CT, USA, 2005.

31. R. Sion and B. Carbunar. On the computational practicality of private informa-
tion retrieval. In Proceedings of the Network and Distributed Systems Security
Symposium, 2007.

32. J. P. Snyder. Flattening the Earth, two thousand years of map projections. Uni-
versity of Chicago Press, 1993.

33. A. Solanas, J. Domingo-Ferrer, and A. Mart́ınez-Ballesté. Location privacy in
location-based services: Beyond TTP-based schemes. In Bettini et al. [4].

34. T. Xu and Y. Cai. Location anonymity in continuous location-based services. In
Proceedings of the 15th Annual ACM international Symposium on Advances in
Geographic information Systems, pages 1–8, New York, NY, USA, 2007.

35. G. Zhong and U. Hengartner. A distributed k-anonymity protocol for location
privacy. In Proceedings of Seventh IEEE International Conference on Pervasive
Computing and Communication (PerCom 2009). Galveston, TX, pages 253–262,
2009.


