
Elxa: Scalable Privacy-Preserving Plagiarism Detection∗

Nik Unger
University of Waterloo

njunger@uwaterloo.ca

Sahithi Thandra
University of Waterloo

sthandra@uwaterloo.ca

Ian Goldberg
University of Waterloo

iang@cs.uwaterloo.ca

ABSTRACT
One of the most challenging issues facing academic conferences
and educational institutions today is plagiarism detection. Typi-
cally, these entities wish to ensure that the work products submitted
to them have not been plagiarized from another source (e.g., au-
thors submitting identical papers to multiple journals). Assembling
large centralized databases of documents dramatically improves the
effectiveness of plagiarism detection techniques, but introduces a
number of privacy and legal issues: all document contents must be
completely revealed to the database operator, making it an attrac-
tive target for abuse or attack. Moreover, this content aggregation
involves the disclosure of potentially sensitive private content, and
in some cases this disclosure may be prohibited by law.

In this work, we introduce Elxa, the first scalable centralized
plagiarism detection system that protects the privacy of the sub-
missions. Elxa incorporates techniques from the current state of
the art in plagiarism detection, as evaluated by the information re-
trieval community. Our system is designed to be operated on ex-
isting cloud computing infrastructure, and to provide incentives for
the untrusted database operator to maintain the availability of the
network. Elxa can be used to detect plagiarism in student work, du-
plicate paper submissions (and their associated peer reviews), sim-
ilarities between confidential reports (e.g., malware summaries), or
any approximate text reuse within a network of private documents.
We implement a prototype using the Hadoop MapReduce frame-
work, and demonstrate that it is feasible to achieve competitive de-
tection effectiveness in the private setting.

CCS Concepts
•Security and privacy → Privacy-preserving protocols; Data
anonymization and sanitization; •Information systems → Near-
duplicate and plagiarism detection;

Keywords
Privacy preservation; plagiarism detection; private record linkage;
applied cryptography; secure multi-party computation
∗An extended version of this paper is available [51].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WPES’16, October 24 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4569-9/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2994620.2994633

1. INTRODUCTION
Plagiarism—a form of academic dishonesty where one copies

the ideas or words of another person without providing a citation—
is an increasingly common issue. A pair of Pew Research Center
surveys conducted in 2011 found that 55% of college presidents
have seen an increase in plagiarism over the past 10 years, while
only 2% reported a decrease [30]. Educational institutions have re-
sponded to this issue in a number of ways; common techniques
include offering information sessions, modifying assignments to
resist plagiarism, and employing formative assessment [49]. Ad-
dressing the issue is also important for academic venues (e.g., con-
ferences and journals): malicious authors sometimes willfully dis-
regard rules preventing duplicate submissions, or submit slightly
modified work created by others.

In order to make use of some preventative techniques, or to apply
punishments for violations, plagiarism must first be detected. Many
useful tools have been developed to detect plagiarism of software
source code and textual documents [1, 25]. While some of these
tools are meant to be run locally, it is beneficial to centralize pla-
giarism detection. State-of-the-art plagiarism detection relies on
matching similarities between documents, and thus the effective-
ness of a detection tool is limited by the size and characteristics
of its corpus. A centralized solution has the advantage of having
visibility into documents belonging to every participant in the net-
work, whereas a locally executed tool would not be able to detect
plagiarism across venue boundaries. One of the most popular cen-
tralized services is developed by Turnitin; this proprietary system
serves over 15,000 institutions covering 30 million students [50].

Unfortunately, centralizing plagiarism detection introduces pri-
vacy and legal concerns. Documents being checked for plagia-
rism may contain confidential information (e.g., unpublished prod-
uct details) that must be revealed to the central authority in these
schemes. Moreover, aggregating a large amount of private infor-
mation at a single source increases its value as a target for secu-
rity compromise. A centralized service also introduces legal is-
sues; authors may be forced to grant the central service a license to
use their intellectual property [10]. In many situations, academic
venues may not have the necessary permissions under copyright
law to share submissions with central authorities.

These desires lead academic venues to confront seemingly con-
flicting objectives: they would like to share information for the
purpose of detecting plagiarism, but they simultaneously want to
preserve the confidentiality of content under their control. In this
work, we present Elxa1, a system that achieves both of these objec-
tives by performing large-scale plagiarism detection on textual con-
tent while also preserving the confidentiality of unplagiarized text.

1Elxa is named after a fictional wizard, created by Patrick Rothfuss,
whose magic relies on the similarity between objects.

http://dx.doi.org/10.1145/2994620.2994633

When a venue analyzes a suspicious document using Elxa, they are
given a list of matching documents, the venues that submitted them,
and the matching textual passages. Academic venues can use Elxa
to privately detect duplicate submissions to other venues, or to lo-
cate previous submissions and their associated peer reviews. Our
scheme includes the use of an untrusted third party that manages
the network and controls the admittance of participants, but never
learns the original text of any documents. The presence of this en-
tity allows our system to resist attacks by malicious groups, and to
provide a monetary incentive for real-world deployment. Specifi-
cally, we make the following novel contributions:
• We define a setting and objectives for scalable centralized pla-

giarism detection with privacy preservation.
• We introduce Elxa, the first protocol to offer privacy protections

in the aforementioned setting.
• We describe how privacy-enhancing technologies can be applied

to a class of state-of-the-art plagiarism detection techniques from
the information retrieval field.

• We evaluate a proof-of-concept implementation of our scheme
using an industry-standard big data framework.
The remainder of this paper is organized as follows: we survey

related work and its shortcomings in §2; we describe an overview
of our design goals and system architecture in §3; we discuss our
approach and prototype implementation for finding matches in §4,
and for confirming matches in §5; we consider security threats and
mitigations in §6; we evaluate Elxa’s performance in §7; finally, we
offer our concluding thoughts in §8.

2. RELATED WORK

2.1 Plagiarism Detection
For seven years, an annual international contest of plagiarism

detection techniques has been held as part of PAN, a series of eval-
uation labs at the CLEF conference [28]. Every year, the contest
provides training and testing corpora, and solicits submission of
software solutions that are compared against all other past and con-
temporary systems. The original plagiarism detection contest at
PAN introduced the first standardized suite of performance met-
rics [38]. Ever since then, PAN has continued to update its contest
as techniques and metrics in the field change. For these reasons,
the top-performing systems presented at PAN represent the state of
the art of publicly available plagiarism detection methodologies.

Plagiarism detection strategies can be divided into two main cat-
egories: intrinsic detection, and external detection [38]. Intrinsic
detection involves examining the text of a suspicious document,
and attempting to locate sections of text that are written with a
significantly different style. Unfortunately, this approach suffers
from a number of insurmountable flaws: minor obfuscation is suf-
ficient to defeat it, and there is no possibility of detecting wholly
plagiarized documents or duplicate documents submitted to mul-
tiple entities. In contrast, external detection involves comparing a
suspicious document to a corpus in order to identify text reuse such
as copies, translations, paraphrases, and summarization [33].

In recent years, the PAN contest has recognized the importance
of centralized corpora by no longer considering intrinsic detection
to be a meritorious approach. All submissions to PAN now follow
the two-stage strategy pioneered by Stein et al. [47]: a suspicious
document is used to search for potential source documents, and
then each source document is compared with the suspicious doc-
ument to identify matching passages. The two stages are called
source retrieval and text alignment, respectively.

PAN submissions are designed to make queries to search engines
for source retrieval, which is a reasonable strategy when privacy is

not a concern. The goal of source retrieval algorithms is to locate
as many actual source documents as possible while minimizing
the number of search queries issued and documents downloaded.
Given potential matches, the text alignment algorithms analyze the
texts and attempt to find reuse.

There is an orthogonal field of research examining plagiarism
detection for source code [25]. These domain-specific algorithms
are much more efficient than simply applying text-based methods
to the sources. In this work, we focus on textual plagiarism detec-
tion; we leave privacy-preserving source code plagiarism detection
as an avenue for future work.

2.2 Private Data Sharing
Many cryptographic protocols are designed to share data with

some sort of privacy guarantees, but none fits well with the plagia-
rism detection model. Private information retrieval (PIR) protocols
allow clients to query data from a database server without reveal-
ing the query [6]. However, the contents of a PIR server’s database
are not hidden. A related technology is oblivious RAM (ORAM),
which allows a client to store secret information on a server with-
out revealing its access pattern [14]. ORAM protects the privacy of
access to a database, but is typically limited to one user.

Searchable encryption allows searches to be performed on ci-
phertexts [5], but requires that data owners explicitly authorize oth-
ers to search their ciphertexts. For scalability, we must avoid pair-
wise access control requirements. Secure sketches allow a user to
use a key to encrypt data that is unlocked only when a similar key is
presented [22]. Unfortunately, secure sketches reveal the plaintext
of the document when a match is detected. Fuzzy Hashing schemes
produce hashes of data that match when the preimages are similar
(rather than only when they are identical) [41]. Unlike the primi-
tives used by Elxa, fuzzy hashes operate on opaque data structures,
and thus do not take advantage of domain-specific features. Se-
cure multi-party computation (SMC) protocols allow multiple par-
ties to interactively compute arbitrary functions without revealing
their inputs [11]. We use a domain-specific SMC protocol in Elxa
that achieves much better performance than generic constructions.
Other related primitives include garbled circuits, fully homomor-
phic encryption, and secure co-processors. While these techniques
are often used to construct SMC protocols, they remain either too
resource-intensive or are incompatible with Elxa’s threat model.

Privacy-preserving record linkage protocols (PPRLs) are closely
related to plagiarism detection [52]. PPRLs attempt to find dupli-
cate entries in confidential distributed databases stored by mutu-
ally distrustful parties, such as patient health records from multi-
ple hospitals. While several PPRLs make use of techniques that
are similar to our approach [12, 29, 43], none is well suited for
our setting. PPRLs are designed to operate on standard relational
databases, where each record consists of multiple structured fields
that are typically short and noisy. PPRLs also normally include
undesirable requirements such as pairwise interaction between par-
ties, the existence of a trusted third party, or small and similarly
sized databases [52]. In contrast, Elxa is specifically designed to
handle a party with a small database looking for matches in a large
distributed database, very long unstructured textual records, an un-
trusted central server, and no large-scale pairwise interactions be-
tween network participants.

3. GOALS AND ARCHITECTURE
Our main objective for this work was to design a usable system

that can provide privacy benefits to real users. In this section, we
describe our novel design goals and system architecture.

Text

Alignment

Querier SubmitterRoot

Document Summary

Query

Matches

Comparison Request

Document Comparison Protocol

C2

C1

Source

Retrieval

Figure 1: This sequence diagram shows a sample Elxa inter-
action. A node submits a document to the root (C2). Later,
another node performs a search query, finds a potential source,
and contacts the submitter to perform a full comparison (C1).

3.1 Participants and Capabilities
An Elxa deployment consists of multiple clients (e.g., academic

venues) and a central server (the root). Each client operates a server
called a node that is always connected to the root. We assume
that the root and the nodes all have access to significant compu-
tational resources and storage. Collectively, the root and the nodes
are called the network. The network provides two capabilities:
• C1: Document Searches. A node can search the network

for source document fragments that match fragments of a
suspicious document. We refer to a node performing this
operation as a querier.
• C2: Document Submission. A node can contribute a doc-

ument to the network’s corpus. We refer to this node as the
document’s submitter.

Both C1 and C2 can be performed with some privacy protection,
which we discuss in §3.2. Searching for matching documents as
part of C1 consists of two phases: potential source documents are
identified using summaries stored by the root (source retrieval), and
then the source documents are compared to the suspicious docu-
ment through communication between the querier and the source
documents’ submitters (text alignment).

Elxa’s high-level operation takes place in three phases:
1. Authors submit their work to a participating venue.
2. The venue’s node queries the root using C1 to find the poten-

tial sources of each document. After the root responds, the
querier contacts other nodes to confirm plagiarism.

3. The venue’s node submits summaries of the documents to the
root using C2.

Figure 1 shows an example illustrating the relationship between
the capabilities and the phases of operation.

3.2 Design Goals
Our design goals for Elxa can be divided into two broad cate-

gories: functionality and usability.
Functionality goals:
• G1: Incrimination. When two parties identify that their docu-

ments contain similar fragments, the text of the matching frag-
ments is revealed to the two parties.

• G2: Effectiveness. The system should achieve G1 with effec-
tiveness similar to state-of-the-art non-private plagiarism detec-
tion schemes, when measured using standard metrics.

• G3: Confidentiality Against the Root. The root cannot reliably
construct any of the original text for any document submitted by
an honest node. However, the root is permitted to learn meta-

data about documents, potentially including their subject matter
and information about the author’s writing style. We precisely
describe the metadata that is allowed to leak in §6.
• G4: Node Accountability. Nodes that overtly misbehave with-

out colluding with the root can be ejected from the network. Ma-
licious nodes cannot significantly equivocate the contents of a
document to the root and to other nodes without detection.
• G5: Confidentiality Against Nodes. Honest-but-curious (HbC)

nodes cannot reliably construct any of the original text possessed
by other nodes, with the exception of incriminating text covered
by G1. HbC nodes are permitted to learn the document metadata
that the root knows, in addition to extra information about the
similarity between documents owned by communication part-
ners. We precisely describe the information that is allowed to
leak in §6. Our use of the HbC threat model is consistent with
most work in the PPRL field [52], although we also achieve some
protection against malicious nodes due to G4.
• G6: Author Accountability. With the cooperation of the sub-

mitter, a document can be traced back to the original author.
• G7: Sybil Attack Prevention. Sybil attacks [9] are discouraged

by requiring verification before enrollment in the network.
Usability goals:
• G8: Incentivization. All participants should be incentivized to

deploy the system.
• G9: Deployability. The system should be deployable on exist-

ing cloud infrastructure without non-collusion assumptions.
• G10: Scalability. The resource demands on the root scale lin-

early with the number of simultaneous searches—not the number
of nodes. The number of text alignment sessions performed dur-
ing a search scales with the number of similar documents in the
network—not the total number of documents or nodes.

3.3 Architectural Overview
All communication channels in the network are secured and au-

thenticated using TLS. We use client authentication with the root
acting as the sole certificate authority to ensure that every node in
the network must be approved by the root before enrolling, achiev-
ing G7. The root can charge a subscription fee for enrollment to
fund network maintenance, incentivizing deployment (G8). Since
nodes are manually approved, we assume that nodes exchange pub-
lic keys with the root using an authenticated out-of-band channel.

Each node in the network has a submitter identifier that is associ-
ated with their TLS certificate. Each document is assigned a unique
document identifier by its submitter. Therefore, each document is
uniquely identified by its submitter and document identifiers. Sub-
mitters maintain a local database of venue-specific user identifiers
(e.g., author usernames) for their submissions. These databases
achieve G6 by allowing documents to be traced to the authors.

Although we focus on the submission of private documents, Elxa
can also trivially support the inclusion of public corpora. The root
can add public documents (e.g., web pages) to the corpus using the
same protocol as submitters and a specialized submitter identifier.

4. SOURCE RETRIEVAL
Elxa’s source retrieval system incorporates ideas from one of

the best non-private schemes, as determined by the information re-
trieval community. We first describe the non-private scheme, and
then show how to privately perform source retrieval.

4.1 Non-Private Approach
The most recent PAN evaluation of source retrieval systems [17]

identified the scheme proposed by Haggag and El-Beltagy [18],
hereafter referred to as HEB13, as the best in terms of precision,

total number of downloads, and number of downloads until a true
source of plagiarism is identified. Compared to the other schemes,
HEB13 generates very few search queries while also maintaining
high precision. These attributes make HEB13 a good choice for
achieving scalability (G10).

HEB13 incorporates a multi-stage processing pipeline that splits
a document into multiple segments, each with an associated search
query of up to 10 words. Stop words—necessary words with little
or no semantic value—are ignored when constructing the queries.
The queries are submitted to the search engine, and the resulting
snippets are checked for relevancy. Relevant documents are down-
loaded in full and are considered potential sources. Subsequent
queries are suppressed if they significantly match previously down-
loaded documents. We refer the interested reader to the original
paper [18] for a full description of HEB13.

While HEB13 produces search queries that are relatively suc-
cessful at locating plagiarism cases, the actual work of matching
documents is performed by the search engine. Submissions to PAN
are tested using the ChatNoir search engine [35], which indexes the
ClueWeb09 database [48]. ChatNoir uses several weighted metrics
to search for query matches: BM25F, PageRank, SpamRank, and
Proximity [16]. We focus on BM25F [53], the most important met-
ric, for our design.

BM25F is a modification of BM25 [40], an extremely popu-
lar measurement used for information retrieval. BM25 scores the
match of a query of n keywords, Q = (q1,q2, . . . ,qn), against a
document D using the term frequency (TF) and inverse document
frequency (IDF) of each keyword. For this reason, BM25 is known
as a TF-IDF statistic. The term frequency t f (qi,D) of a keyword
qi in a document D denotes the number of times that qi appears in
D. The IDF id f (qi) is given by Robertson and Sparck Jones [39]:

id f (qi) = log
N−n(qi)+0.5

n(qi)+0.5
(1)

where N is the number of documents in the collection, and n(qi) is
the number of documents containing at least one occurrence of qi.
The BM25 score for a document is given by Robertson et al. [40]:

BM25(Q,D) =
n

∑
i=1

id f (qi) ·
t f (qi,D)

K(D)+ t f (qi,D)
(2)

The support function K(D) is defined as:

K(D) = k1

(
(1−b)+b · dl(D)

avdl

)
(3)

where k1 and b are system parameters, dl(D) is the number of
words in D, and avdl is the mean number of words per document
across the corpus. BM25F differs from BM25 by assigning weights
to different parts of the document (e.g., headings and body text).

4.2 Privacy Preservation Overview
We now introduce our novel privacy-preserving source retrieval

system. Unlike ChatNoir in the PAN setting, the root in our setting
does not have access to the original text of the documents (G3). In-
stead, the root stores only the information necessary for evaluating
a document’s BM25 score. This makes it impossible for the root
to generate document snippets in the traditional manner (i.e., by
simply selecting a substring surrounding the matching keywords
in a document). We overcome this problem by having document
submitters break documents into non-overlapping snippets during
submission (C2). §4.3 describes this procedure in detail.

Source retrieval also encompasses the first phase of the private
searching process (C1). Elxa incorporates ideas from both HEB13
and the ChatNoir search engine in order to implement a scalable
BM25-based search of the snippets in the root’s database. §4.4
describes the details of our scheme.

4.3 Snippet Generation
When a node is ready to submit a document to the network (C2),

it begins the process of snippet generation. The submitter stores
details about the document source (e.g., the author username), the
document identifier, and the raw document text in its local database.
The document is then pre-processed in a manner similar to HEB13:
non-English letters are removed, and non-stop words are tokenized.
Next, the node partitions the document into chunks of word tokens,
where the total length of the tokens within each chunk is as close as
possible to, but does not exceed, 500 characters. Words are never
split to fit within the character limit. The next step is to transform
these chunks of tokens into snippets.

Our snippet generation procedure involves the use of a data struc-
ture known as a count-min sketch (CMS). A CMS is a probabilistic
data structure that stores an approximate representation of a multi-
set (e.g., a frequency table). CMSes were introduced by Muthukr-
ishnan and Cormode [7], and are related to Bloom filters (which
operate on sets rather than multisets). A CMS contains a two-
dimensional table with a pre-defined depth and width. Each row
in the table is associated with a pairwise-independent hash func-
tion. When a value is inserted into the structure, the hash for each
row determines the associated column. The frequency of the value
is then added to these cells. To query for a frequency, the same
hashes are performed, and the output is the minimum value in the
resulting cells. A CMS will never underestimate, but may overesti-
mate, an event’s frequency.

Once the document has been split into chunks, the submitter
computes the word frequency distribution of each chunk and stores
the distributions in CMSes (one per chunk). Words are stemmed us-
ing the Porter word stemmer [32] and then processed by a collision-
resistant hash function with a globally shared salt before being
added to the CMS. Each CMS represents one document snippet.
The snippets are then shuffled and sent to the root alongside the
document identifier. Appendix B includes an example of a snippet.

4.4 Private Search Queries
While HEB13 is designed to use a public general-purpose web

search engine, Elxa interacts with a custom server storing snippets
encoded as CMSes. The key insight of this approach is that storing
snippet frequency tables in a CMS preserves the information neces-
sary to compute BM25 scores, but recovering the original text from
such a CMS is believed to be difficult (see §6).

To begin a search, the querier stems and hashes the query key-
words with the same method used for snippet generation. The
server then scores each snippet in the database against the query
using BM25, as defined in Equation 2. Our server does not use
the BM25F, PageRank, SpamRank, or Proximity metrics used by
ChatNoir, since these approaches are inapplicable to the setting or
rely on information that is discarded for privacy reasons.

The term frequency for BM25 is computed on a per-snippet ba-
sis: t f (qi,S) for a keyword qi and a snippet S is computed by query-
ing the CMS associated with S for the frequency of qi. Computing
K is slightly more difficult. In this context, dl(S) can be found by
computing the sum of any row in the CMS, since this indicates the
number of events (i.e., words in the frequency table). Likewise,
avgdl is the mean value of dl(s) across every s in the database. The
id f for each keyword is computed on a per-document basis, and
can be found by querying the CMSes in a similar manner.

HEB13 requires that clients only download documents where at
least 50% of the query keywords appear in the snippet. Since our
server is designed to exclusively support Elxa, we implement this
logic in the server. Specifically, any snippets that do not meet this
criterion are discarded. Once the server has ranked matching snip-

pets by their score, it sends information about the top five associ-
ated documents to the node. Each result includes the document’s
submitter identifier, document identifier, and constituent snippets.
The identifiers allow the querier to contact the submitters to per-
form the text alignment phase of C1, while the document snippets
allow it to suppress redundant queries in the same way as HEB13.

Since any big data platform can perform these computations,
Elxa achieves our deployability (G9) and scalability (G10) goals.

4.5 Implementation
To demonstrate the practicality of our approach, we developed

a prototype implementation of Elxa’s source retrieval system for
the Apache Hadoop MapReduce platform [2]. Since Hadoop is
widely available in commoditized cloud infrastructure, using it as a
platform for our prototype demonstrates Elxa’s deployability (G9).
Our prototype server receives queries through a custom binary net-
work protocol, and then issues two MapReduce jobs—one to gather
counts necessary to compute IDF values (see Equation 1), and an-
other to find the best matching snippets using BM25. In a large de-
ployment, it is possible to eliminate the first job by using a global
frequency table to estimate IDF values. Appendix A discusses our
exact approach to optimizing the MapReduce performance.

One of the challenging aspects of deploying the source retrieval
system is choosing a size for the count-min sketches that balances
query accuracy, the amount of information revealed to the root, and
the storage and bandwidth costs. The best CMS size to choose is
deployment-specific, since it depends on the characteristics of the
submitted documents. Appendix B contains an example of a CMS
and discusses technicalities of CMS size selection. In the extended
version of this paper [51], we test error rates for CMSes of various
sizes. In a setting with approximately 100 words per snippet, a
CMS depth of 11 and width of 182 provides balanced performance.

5. TEXT ALIGNMENT
After completing the source retrieval process, the querier has a

set of potential source documents. The next step of the search pro-
cedure (C1) is to contact the submitters of the source documents
in order to identify and confirm matches with the suspicious docu-
ment. This is the role of the text alignment protocol.

5.1 Non-Private Approach
Before describing our privacy-preserving text alignment scheme,

we first examine one of the best non-private schemes [34]: the sys-
tem designed by Sanchez-Perez et al. [44], hereafter referred to as
SP14. Since Elxa shares many components with SP14, we now
describe the approach in detail. SP14 involves four phases:
1. Preprocessing: The texts are split into sentences and words.
2. Seeding: All pairs of sentences from the documents are com-

pared to find similar sentence pairs known as seeds.
3. Extension: The seeds are extended into pairs of similar docu-

ment excerpts called fragments. The fragment pairs are candi-
date plagiarism cases.

4. Filtering: The candidates are filtered to reduce false positives.
SP14 dynamically selects between two sets of system parameters.
One parameter set is tuned to detect summarization, and the other
is tuned to detect other types of text reuse.

Preprocessing: To begin, the document is split into sentences
using the same Punkt sentence tokenizer used by HEB13 [21]. Each
sentence is broken into word tokens using the Treebank word tok-
enizer [24]. Non-English words and stop words are discarded. All
words are converted to lower case and passed through the Porter
word stemmer [32]. The last stage of preprocessing repeatedly
merges sentences with fewer than four words (after filtering).

Seeding: The purpose of the seeding phase is to identify many
candidate text reuse cases. A seed is a pair of sentences—one from
each document. To locate seeds, every possible pair of sentences is
compared to assess their similarity.

Before comparing the sentences, they must first be expressed in
terms of a vector space model [42]. Conceptually, each sentence
is transformed into a vector where the frequency of every possible
word is given by the value of an associated component. These fre-
quencies are computed using a variant of the TF-IDF statistic [46]
known as TF-ISF (term frequency—inverse sentence frequency).
The TF-ISF value for a word token t in a sentence s is given by:

t f -is f (t,s) = t f (t,s)× log
|S|

|{s′ ∈ S : t ∈ s′}|
(4)

where S is the set of sentences in the two documents, and t f (t,s)
denotes the number of times that t appears in s.

Once the sentences from the source and suspicious documents
have been converted into vectors, the similarity of the vectors is
computed. SP14 uses two different metrics to evaluate similarity:
the cosine and Sørensen-Dice [8, 45] metrics. If s1 (resp., s2) is the
vector corresponding to the sentence from the suspicious (resp.,
source) document, then the cosine similarity is given by:

cos(s1,s2) =
s1 • s2

|s1||s2|
(5)

where • denotes the dot product, and |s| denotes the Euclidean
norm of s. If b1 (resp., b2) is the set of words appearing at least
once in the suspicious (resp., source) sentence, then the Sørensen-
Dice similarity is given by:

Dice(b1,b2) =
2|b1∩b2|
|b1|+ |b2|

(6)

If the cosine similarity of a sentence pair exceeds th1 and the
Sørensen-Dice similarity also exceeds th2, where th1 and th2 are
system parameters, then the pair is accepted as a seed.

Fragment extension and filtering: During the next two phases
of SP14, the seeds, each denoting a pair of similar sentences, are
extended into pairs of similar document fragments. A document
fragment is a contiguous sequence of sentences from one of the
documents. The output of these phases is a set of pairs of similar
document fragments (i.e., plagiarism cases). The similarity of two
fragments F1 and F2 is computed as the cosine similarity of the sum
of the corresponding sentence vectors:

sim(F1,F2) = cos(Σs1∈F1 s1, Σs2∈F2 s2) (7)
SP14 reports only non-overlapping plagiarism cases exceeding a
minimum length. Fragments in Elxa are formed in precisely the
same way as in SP14; we refer the interested reader to the SP14
paper for details [44].

5.2 Privacy Preservation
We now introduce Elxa’s mechanism for transforming SP14 into

an interactive privacy-preserving protocol. More generally, our ap-
proach can derive private variants of text alignment schemes that
compare documents with the cosine and Sørensen-Dice metrics.

In the non-private setting, SP14 is given full access to both the
suspicious and source document, and the algorithm is executed by
a single party. In our setting, the algorithm is executed jointly be-
tween two HbC parties, and each party has access to only one of the
documents. Since the behavior of SP14 is deterministic for given
input documents, the core approach is to have both parties execute
the algorithm independently. Wherever the non-private algorithm
performs a computation accessing both texts, the private protocol
interactively performs an equivalent private joint computation.

From the perspective of one party, the following operations re-
quire knowledge about the other document:

1. The number of sentences in the other document must be known.
This information is needed for several reasons: the seeding phase
requires a pairwise measurement of sentence similarities, com-
puting the TF-ISF measure given in Equation 4 uses the number
of sentences to compute the inverse sentence frequencies, and the
document bounds are used for fragment extension and filtering.

2. The order of sentences in the other document must be known.
During the extension phase, the initial seeds are extended to
form document fragments. These fragments consist of contigu-
ous sentences, and the formation of fragments is based on the
location of the seeds.

3. The number of sentences in the other document that contain a
given word must be known in order to compute the word’s ISF.

4. The vector space model representation of each sentence in the
other document must be known in order to compute the similarity
between pairs of sentences and document fragments.

If the two parties simply revealed this information, they would be
able to derive raw “bag of words” representations of each other’s
sentences. We can provide much better privacy by making a key
observation: since SP14 uses the TF-ISF vectors only to compute
the cosine and Sørensen-Dice metrics, they can perform a secure
multi-party computation of Equations 5 and 6 without revealing
their own vectors. Now, HbC parties can no longer derive the bag
of words corresponding to sentences in the other document. Conse-
quently, the only information that is revealed is the degree of simi-
larity between sentences and the position of those sentences within
the documents—precisely what is needed to detect text reuse.

Elxa’s text alignment protocol is interactively performed by a
client—the node with the suspicious document—and a server—the
node with the source document. The parties first exchange the num-
ber of sentences in their documents, and then jointly enumerate the
sentence pairs in a specified order. For each pair, they execute a se-
cure multi-party computation protocol that we call priv-sim, with
each party providing its sentence as input. priv-sim outputs the co-
sine and Sørensen-Dice metrics of the two sentences. These values
are compared to the threshold parameters th1 and th2 as in SP14.
After the seeding phase, the parties perform fragment extension and
filtering in the same way as in SP14, except that priv-sim is used to
compute fragment similarities.

5.3 Private Similarity Computation
The core of Elxa’s text alignment scheme is the priv-sim proto-

col, which computes the cosine and Sørensen-Dice similarities of
two private sentences as follows:
1. Both parties reveal the number of unique words in their sentence.
2. The parties jointly compute the set of words appearing in both

sentences—we call these the shared words.
3. If they haven’t done so already, both parties reveal the sentence

frequency of each shared word.
4. The parties compute the TF-ISF of their words.
5. The parties jointly compute the cosine similarity.
6. The parties compute the Sørensen-Dice similarity.

After exchanging their word counts in step 1, the parties com-
pute the shared words in step 2. If we view each sentence as a set
of unique word tokens, then the problem of privately computing the
shared words is exactly the private set intersection (PSI) problem.
PSI protocols are common in the cryptographic literature [31]; they
allow parties to jointly compute the intersection of their private sets
without revealing any information about those sets. For our appli-
cation, we make use of the PSI protocol introduced by Huberman,
Franklin, and Hogg [19], hereafter called HFH99.

Once the shared words have been identified using HFH99, the
parties compute the TF-ISF values of their words. This presents a

challenge: the inverse sentence frequency term in Equation 4 re-
quires knowledge of the number of sentences (across both docu-
ments) in which the associated word appears. Each party knows
this sentence frequency for their own document, but not for the
other party’s document. One possible way to handle this problem
would be to have the parties reveal all sentence frequencies to each
other at the beginning of the protocol. However, this reveals a lot
of information, such as the complete list of all words that appear in
the document. Instead, we accept a compromise. In step 3, the par-
ties exchange exact sentence frequencies for only the shared words.
The values are cached to minimize communication. In step 4, the
TF-ISF value for each term t in sentence s is then computed as:

t f -is f (t,s) = t f (t,s)× log
|D|+ |D′|

s f (t,D)+ s f (t,D′)
where D is the document known to the party, D′ is the other party’s
document, each document is a set of sentences, and s f (t,D) de-
notes the frequency of the term t in the sentences of document D.
For shared words, the value of s f (t,D′) was explicitly transmitted
in step 3. For non-shared words, the value is estimated as:

s f (t,D′) = s f (t,D) ·
(

1+
|D′|
|D|

)
(8)

This optimistic estimation assumes that the sentence frequency of
non-shared words is equal in both documents.

Next, the parties want to privately compute the cosine similar-
ity metric depicted in Equation 5. In §5.1, we suggested that each
input vector for the cosine similarity metric had a component as-
sociated with every possible input word. Of course, this does not
work well in practice: there is no dictionary of every possible word
that will ever appear in documents submitted to the system. Luck-
ily, the metric only requires computation of the dot product and
the Euclidean norm of the vectors—both of these measures are un-
affected by zero entries. The Euclidean norm can be computed
privately by each party on the t f -is f values for all words in their
sentence. To compute the dot product, the parties need to construct
vectors with the t f -is f values for only the shared words. They can
sort the words to ensure a common ordering for the vector entries.

Given the input vectors associated with shared words, the two
parties perform secure multi-party computation of the cosine simi-
larity metric. We adapt the technique introduced by Jiang et al. [20,
26]. The strategy is to divide each t f -is f value by the Euclidean
norm, and then perform a private dot product computation. We can
compute the dot product by using a cryptosystem that supports ho-
momorphic addition of plaintexts and homomorphic multiplication
by a scalar.2 Like Jiang et al., we use the Paillier cryptosystem [27].
Given n-dimensional input vectors vA and vB known to only Alice
and Bob, respectively, the protocol proceeds as follows:

1. Bob generates a Paillier key pair (pk, pr)←KeyGen() and sends
public key pk to Alice.

2. Alice sends Encpk(vA
1), . . . ,Encpk(vA

n) to Bob.
3. Bob homomorphically computes

Encpk(vB
1 × vA

1), . . . ,Encpk(vB
n × vA

n).
4. Bob homomorphically computes

Encpk(vB
1 × vA

1 + · · ·+ vB
n × vA

n) and sends it to Alice.
5. Alice decrypts the dot product vB

1 × vA
1 + · · ·+ vB

n × vA
n and sends

it to Bob.
After running this protocol on their input vectors for their common
words, the two parties have computed the cosine similarity metric.

The last value to compute as part of priv-sim is the Sørensen-
Dice similarity metric defined in Equation 6. This is trivial: the
formula depends only on the number of unique words in each sen-

2We encode the rational numbers as integer multiples of a tiny
value. The precision loss is inconsequential.

tence, and the number of shared words. Since these values are al-
ready known to both parties, the metric can be computed directly.

5.4 Implementation
We developed proof-of-concept client and server implementa-

tions of Elxa’s text alignment protocol in the Go programming lan-
guage [13]. When a client connects to the server, it begins by send-
ing the document identifier of the source document. The server uses
this identifier to look up the document’s text in its local database,
and responds with a freshly generated Paillier public key. The text
alignment protocol is then executed. In a real deployment of Elxa,
each node would run this text alignment server. The root would
distribute connection information for each node so that a querier
could connect to the submitters of potential source documents.

An interesting but orthogonal question is what to do when plagia-
rism is detected. The client and server might notify their respective
administrators to ask for approval before acting. In our prototype,
the parties automatically exchange and display matching plaintexts.

6. SECURITY ANALYSIS
Elxa’s source retrieval approach, described in §4, provides sig-

nificant privacy benefits compared to HEB13, and provides sub-
stantial confidentiality against the root (G3). However, it necessar-
ily leaks some information; the root is able to learn the number of
documents submitted by each node, the approximate size of each
document, and the timing and source node of submissions. If the
root performs a dictionary attack, constructing a mapping between
words and their hashed values, then it can learn the approximate
frequency of non-stop words in each snippet. However, the hash
protects all words that do not appear in the root’s dictionary, such
as unique names of products. We stress that the root cannot learn
the following information:
• the order of the snippets within each document;
• the order of words within each snippet;
• the plaintext of very rare and previously unseen words; and
• the position or frequency of stop words.
This limited information is enough to perform some information
retrieval operations, such as BM25, but falls far short of being able
to reconstruct the original document (G3), even with extrinsic in-
formation like language frequency distributions and the topic of
documents. Appendix C includes an example of the data that the
root can collect by performing a dictionary attack.

Neither HEB13 nor Elxa are explicitly designed to find highly
obfuscated plagiarism. While modifications to the protocols could
be made to improve performance for obfuscated documents, most
plagiarists used little or no obfuscation when constructing the PAN
evaluation corpus [18]. For applications where most instances of
plagiarism are egregious, more obfuscation-resistant algorithms,
which typically have higher false positive rates, are unnecessary.

Of course, the root is able to attack the availability of the net-
work by shutting down the database or by refusing to accept valid
connections. We consider such availability attacks to be outside the
scope of our threat model, especially since the server has a mone-
tary incentive to continue operating (G8).

Our use of TLS with mandatory client authentication serves to
prevent abuse of the network by malicious nodes (G4). Any unau-
thorized party, such as a malicious author or an advertiser, can-
not use the search (C1) or submit (C2) capabilities. An authorized
client acting maliciously, such as a node attempting a denial-of-
service attack on the network, or a node that queries the database
without contributing to the corpus, can be easily blocked.

Elxa’s text alignment protocol, described in §5, is secure against
HbC attackers (G5). In addition to plagiarized texts, nodes learn the

following non-incriminating data about the other party’s document:
• the number of sentences;
• the location of similarity matches;
• the similarity scores of every pair of sentences;
• the shared words for every pair of sentences; and
• the sentence frequency of all shared words.

A malicious node can cause the other party to reveal the entire
plaintext of their document during the text alignment protocol. The
HFH99 protocol is secure only in the HbC setting, so a malicious
party can force all words in the sentence to match. A malicious
party can also set their inputs to the private dot product protocol
to be extremely large values, causing matches between all sentence
pairs. The result of these attacks is that the entire documents will
appear to match, and thus the full plaintexts will be revealed. A
malicious party can also choose to withhold their matches. One
possible defense against overtly malicious nodes is to compare the
information received during the text alignment protocol to the as-
sociated snippets submitted to the root. If a party manipulates their
protocol inputs to maliciously reveal plaintext without the cooper-
ation of the root, then the malicious behavior may be detected by
querying the CMSes. Additional accountability can be achieved by
requiring digital signatures for text alignment messages; an honest
participant could then submit a non-repudiable transcript of misbe-
havior to the root, which could expel the malicious party (G4).

Defending against malicious attackers in the text alignment pro-
tocol is very difficult. Simply replacing the Paillier and HFH99
components with sub-protocols that are secure in the malicious set-
ting is insufficient; malicious parties could still potentially cause
information leaks by behaving incorrectly in the other phases of
SP14 (e.g., fragment extension). A full defense may require the
use of extremely expensive approaches such as performing veri-
fied computation with SNARKs [4], or performing the entire SP14
protocol with secure multi-party computation. We stress that even
a text alignment protocol secure against malicious attackers would
not prevent participants from fabricating documents; malicious par-
ties would still be able to perform attacks at this higher protocol
layer. For example, a malicious submitter could fabricate docu-
ments with sensitive sentences to identify sensitive submissions;
without a trusted party to certify document authenticity, this is an
extremely difficult challenge to overcome. Instead of making major
performance or deployability concessions, Elxa uses accountability
(G4) to restrict malicious nodes to covert actions.

7. EVALUATION
We performed several experiments to determine if our prototype

implementation of Elxa meets our objectives defined in §3.2. In
this section, we investigate Elxa’s effectiveness (G1, G2) and scal-
ability (G10) by addressing the following questions:

1. How effective is Elxa’s source retrieval scheme?
2. How many queries are needed to search the network?
3. What is the effectiveness and performance of Elxa’s text align-

ment protocol?

7.1 Source Retrieval Performance
To evaluate the performance and scalability of our source re-

trieval implementation, we tested our prototype using artificially
constructed document databases of varying sizes. We began by col-
lecting 57 suspicious documents from the PAN plagiarism detec-
tion testing corpus [28]. These documents were created by crowd-
sourcing plagiarism, and ground truth data is available [36]. For
each suspicious document, we used the original HEB13 implemen-
tation to query ChatNoir. We downloaded the top 10 matching
documents for each query, as well as the ground truth source doc-

6
3
9
2

1
6
3
9
2

2
6
3
9
2

3
6
3
9
2

4
6
3
9
2

5
6
3
9
2

6
6
3
9
2

7
6
3
9
2

8
6
3
9
2

9
6
3
9
2

1
0
6
3
9
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision

Recall

Documents in Database

Figure 2: Elxa’s effectiveness is stable as the database grows.

6
3
9
2

1
6
3
9
2

2
6
3
9
2

3
6
3
9
2

4
6
3
9
2

5
6
3
9
2

6
6
3
9
2

7
6
3
9
2

8
6
3
9
2

9
6
3
9
2

1
0
6
3
9
2

0

2

4

6

8

10

12

14

16

18

20

Queries

Downloads

Documents in Database

Figure 3: Elxa’s workload scales well with database size.

uments for the testing set. This process produced 6392 documents
that we call the source corpus.

Next, we deployed our prototype Elxa root server on a Hadoop
cluster with six machines. Five machines acted as the HDFS data
and YARN nodes, while the remaining machine acted as the re-
source manager, HDFS name node, and Elxa root. We designed our
prototype root server to allow submissions and queries to multiple
databases, allowing us to use the same server to simulate different
experimental conditions in parallel.

We constructed 11 databases by processing documents with our
snippet generator (C2, see §4.3). The first database contained only
the source corpus. Each of the 10 subsequent databases succes-
sively added an additional 10,000 documents selected at random
from the ClueWeb09 corpus, which we call noise documents.

Finally, we measured the performance of our implementation by
searching for plagiarism with each suspicious document in each
database. We ensured that the document identifiers of the source
corpus were preserved so that we could compare the results to the
ground truth values. We evaluated the results using the official per-
formance metrics provided by PAN [28].

Figure 2 shows the performance of Elxa as the database size in-
creases, in terms of precision and recall—the standard performance
metrics used at PAN [17]. Precision is defined as the proportion
of downloaded documents that are plagiarism sources or near du-
plicates of those sources. Recall is defined as the proportion of
plagiarism sources that are identified during the search. Both the
precision and recall remain stable (approximately 0.4 and 0.5, re-
spectively) as the size of the database grows, even when 94% of the
documents in the database are unrelated to the query. The precision
and recall of HEB13 interacting with ChatNoir are 0.67 and 0.31,
respectively [18]. While not directly comparable (due to the differ-
ences in setting and search engine similarity metrics), these values
show that Elxa performs well according to PAN’s standards.

Algorithms submitted to PAN are evaluated based on the number
of queries and downloads that they perform. Figure 3 depicts the

6
3

9
2

1
6

3
9

2

2
6

3
9

2

3
6

3
9

2

4
6

3
9

2

5
6

3
9

2

6
6

3
9

2

7
6

3
9

2

8
6

3
9

2

9
6

3
9

2

1
0

6
3

9
2

0

5

10

15

20

25

Sent (KiB)

Received (MiB)

Documents in Database

Figure 4: Elxa’s per-document bandwidth requirements are
stable, but participants require substantial downstream band-
width (as they do for other PAN algorithms).

workload generated by Elxa as the database grows. For compari-
son, HEB13 generates a mean of 13.9 queries and 5.2 downloads
when interacting with ChatNoir. Figure 3 shows that Elxa per-
forms more downloads than HEB13, but only slightly more queries.
These results reflect ChatNoir’s better matching algorithm; Elxa is
restricted to using only BM25 for private documents. Nonetheless,
the workload generated by Elxa scales well.

Figure 4 depicts the average traffic generated for each document.
The “sent” traffic flows from the submitter to the root (shown in
KiB), and “received” traffic flows from the root to the submitter
(shown in MiB). PAN publications do not include statistics on net-
work traffic. However, queries incur smaller bandwidth costs for
Elxa than for HEB13 since the Elxa root includes only matching
documents in its results, whereas HEB13 must download docu-
ment snippets from ChatNoir before deciding if the full documents
should be downloaded. Therefore, “received” values are necessar-
ily larger for HEB13 than for Elxa.

Our prototype server implementation takes a mean of 95 seconds
(standard deviation 20 seconds) to search the source set. With the
addition of 100,000 noise documents, the query time increases to
130 seconds (standard deviation 40 seconds). Implementing Elxa
directly using the Hadoop MapReduce framework incurs a non-
trivial minimal cost per query, and leads to this relatively poor
query time scalability. Implementing Elxa on a big data computing
platform specifically designed to perform real-time queries should
dramatically improve the results. Nonetheless, even our unopti-
mized prototype achieves good performance for large databases.
For comparison, HEB13 required over 46 hours to process 99 doc-
uments using ChatNoir [17]. We reiterate that Elxa deployments
can double query performance by heuristically estimating IDF val-
ues instead of performing exact counts (see Appendix A).

7.2 Text Alignment Performance
We evaluated the performance of Elxa’s text alignment scheme

using the PAN 2014 testing corpus #3—the largest and most re-
cent publicly available testing set [28]. The corpus contains 4,800
pairs of suspicious and source documents with 1,600 instances of
verbatim text reuse and 1,600 instances involving obfuscation.

We ran our client and server prototypes on a single machine and
executed the private text alignment protocol for every document
pair. We used the official PAN performance analysis tool to com-
pute the precision, recall, granularity, and plagdet score [37]. Gran-
ularity measures whether the detections covered the entire plagia-
rism case, or only a fraction of it. The plagdet score is a combina-
tion of the other three metrics.

Table 1 shows our results compared to SP14. The results demon-
strate that Elxa performs comparably to state-of-the-art text align-

Table 1: Elxa’s text alignment scheme performs competitively.
Values are computed over 4,800 document pairs. PAN publica-
tions do not report standard deviations [34].

METRIC ELXA SP14
Precision 0.83 0.87

Recall 0.88 0.92
Granularity 1.00 1.00

Plagdet 0.85 0.89

ment schemes. The only effective difference between Elxa and
SP14 is that Elxa estimates the inverse sentence frequency of words
until they have been observed in the intersection of words from two
sentences. If this inaccuracy was removed through one of the tech-
niques described in §5.3, then the performance would be identical
(at the cost of reduced privacy).

We performed our experiments in parallel using 65 2.4 GHz CPU
cores.3 Since the most expensive operations in the algorithm are
performed for each sentence pair, we measured the time and band-
width requirements in terms of the sentence pair count for each of
the 4,800 test cases. Figure 5 plots the time required, and Figure 6
plots the total data transmitted; in both cases, there is a clear linear
correlation. The mean number of sentence pairs compared per sec-
ond was 26 with a standard deviation of 18. The mean number of
sentence pairs compared per MiB was 650 with a standard devia-
tion of 230. More operations must be performed when documents
are more similar, causing the variance in Figures 5 and 6. Since
text alignment is performed rarely, these results show that content
matching can be completed relatively quickly and efficiently.

8. CONCLUSION
In this work we introduced Elxa, a privacy-preserving central-

ized plagiarism detection system incorporating state-of-the-art in-
formation retrieval techniques. Elxa is designed to be scalable, and
can operate on existing cloud computing infrastructure. Our im-
plementation of Elxa for the Hadoop MapReduce platform demon-
strates the feasibility of our approach. As future work, we plan to
develop and deploy a full implementation of Elxa based on a real-
time cloud computing platform.

We also described a new mechanism for privately computing
the cosine and Sørensen-Dice similarity metrics between two HbC
parties. Our general approach can be used to construct privacy-
preserving variants of many similar schemes. While we discussed
Elxa in the context of plagiarism detection, it can also be used to
find any type of approximate text reuse, such as similarities be-
tween confidential corporate reports.

Plagiarism detection is one of the most important problems fac-
ing academia today. The architecture, objectives, and scheme pre-
sented in this work are the first step toward joining the best tech-
niques from the privacy-enhancing technology and information re-
trieval communities. It is our hope that this work will encourage
wider use of plagiarism detection systems by alleviating the major
privacy and legal concerns associated with previous schemes.

Acknowledgments
The authors would like to thank the anonymous reviewers for their
insightful comments and feedback, and NSERC for grant RGPIN-
341529. This work benefited from the use of the CrySP RIPPLE
Facility at the University of Waterloo.
3While Elxa’s text alignment protocol is highly parallelizable, we
used only one core per experiment for evaluation purposes.

0 5000 10000 15000 20000

0

60

120

180

240

300

360

420

480

540

Sentence Pairs

T
im

e
(C

P
U

S
ec

o
n

d
s)

Figure 5: Elxa’s text alignment completes within minutes for
large documents in the PAN testing corpus.

0 5000 10000 15000 20000

0

5

10

15

20

25

Sentence Pairs

D
a

ta
T

ra
n

sm
it

te
d

(M
iB

)

Figure 6: The amount of text alignment data transmitted grows
linearly with the number of sentence pairs.

References
[1] Salha M. Alzahrani, Naomie Salim, and Ajith Abraham.

“Understanding Plagiarism Linguistic Patterns, Textual
Features, and Detection Methods”. In: IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and
Reviews 42.2 (2012), pp. 133–149.

[2] Apache. Hadoop. 2011. URL: https://hadoop.apache.org/
(visited on 2016-07-27).

[3] Austin Appleby. SMHasher. 2008. URL:
https://github.com/aappleby/smhasher (visited on
2016-07-27).

[4] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin,
Eran Tromer, and Madars Virza. “SNARKs for C: Verifying
Program Executions Succinctly and in Zero Knowledge”. In:
Advances in Cryptology – CRYPTO 2013. Springer, 2013,
pp. 90–108.

[5] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and
Giuseppe Persiano. “Public Key Encryption with Keyword
Search”. In: Advances in Cryptology – EUROCRYPT 2004.
Springer, 2004, pp. 506–522.

[6] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. “Private Information Retrieval”. In: Journal of
the ACM (JACM) 45.6 (1998), pp. 965–981.

[7] Graham Cormode and S. Muthukrishnan. “An improved data
stream summary: the count-min sketch and its applications”.
In: Journal of Algorithms 55.1 (2005), pp. 58–75.

[8] Lee R. Dice. “Measures of the Amount of Ecologic
Association Between Species”. In: Ecology 26.3 (1945),
pp. 297–302.

https://hadoop.apache.org/
https://github.com/aappleby/smhasher

[9] John R. Douceur. “The Sybil Attack”. In: Peer-to-Peer
Systems. Springer, 2002, pp. 251–260.

[10] Eric Goldman. Clickthrough Agreement Binding Against
Minors—A.V. v. iParadigms. 2008. URL: http://blog.
ericgoldman.org/archives/2008/03/clickthrough_ag.htm
(visited on 2016-07-27).

[11] Joan Feigenbaum and Rebecca N Wright. Systemization of
Secure Computation. Tech. rep. DTIC Document, 2015.

[12] Shahabeddin Geravand and Mahmood Ahmadi. “An efficient
and scalable plagiarism checking system using Bloom
filters”. In: Computers and Electrical Engineering 40.6
(2014), pp. 1789–1800.

[13] Go Project. The Go Programming Language. 2009. URL:
https://golang.org/ (visited on 2016-07-27).

[14] Oded Goldreich. “Towards a Theory of Software Protection
and Simulation by Oblivious RAMs”. In: Proceedings of the
19th Annual ACM Symposium on Theory of Computing.
ACM. 1987, pp. 182–194.

[15] Google. Protocol Buffers. 2008. URL:
https://developers.google.com/protocol-buffers (visited on
2016-07-27).

[16] Jan Graßegger, Maximilian Michel, Martin Tippmann,
Matthias Hagen, Martin Potthast, and Benno Stein. “The
ChatNoir Ranking”. 2012. URL: http://webis15.medien.uni-
weimar.de/data/chatnoir-ranking.pdf (visited on 2016-07-27).

[17] Matthias Hagen, Martin Potthast, and Benno Stein. “Source
Retrieval for Plagiarism Detection from Large Web Corpora:
Recent Approaches”. In: Working Notes for the CLEF 2015
Conference. 2015.

[18] Osama Haggag and Samhaa El-Beltagy. “Plagiarism
Candidate Retrieval Using Selective Query Formulation and
Discriminative Query Scoring”. In: Working Notes for the
CLEF 2013 Conference. 2013.

[19] Bernardo A. Huberman, Matt Franklin, and Tad Hogg.
“Enhancing Privacy and Trust in Electronic Communities”.
In: Proceedings of the 1st ACM Conference on Electronic
Commerce. ACM. 1999, pp. 78–86.

[20] Wei Jiang, Mummoorthy Murugesan, Chris Clifton, and
Luo Si. “Similar Document Detection with Limited
Information Disclosure”. In: Proceedings of the IEEE 24th
International Conference on Data Engineering. IEEE. 2008,
pp. 735–743.

[21] Tibor Kiss and Jan Strunk. “Unsupervised Multilingual
Sentence Boundary Detection”. In: Computational
Linguistics 32.4 (2006), pp. 485–525.

[22] Qiming Li, Yagiz Sutcu, and Nasir Memon. “Secure Sketch
for Biometric Templates”. In: Advances in Cryptology –
ASIACRYPT 2006. Springer, 2006, pp. 99–113.

[23] Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze. Introduction to Information Retrieval.
1st ed. Cambridge University Press, 2008.

[24] Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. “Building a Large Annotated
Corpus of English: The Penn Treebank”. In: Computational
linguistics 19.2 (1993), pp. 313–330.

[25] Vítor T. Martins, Daniela Fonte, Pedro Rangel Henriques, and
Daniela da Cruz. “Plagiarism Detection: A Tool Survey and
Comparison”. In: 3rd Symposium on Languages, Applications
and Technologies. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2014, pp. 143–158.

[26] Mummoorthy Murugesan, Wei Jiang, Chris Clifton, Luo Si,
and Jaideep Vaidya. “Efficient privacy-preserving similar
document detection”. In: The VLDB Journal—The
International Journal on Very Large Data Bases 19.4 (2010),
pp. 457–475.

[27] Pascal Paillier. “Public-Key Cryptosystems Based on
Composite Degree Residuosity Classes”. In: Advances in
Cryptology – EUROCRYPT’99. Springer, 1999, pp. 223–238.

[28] PAN. PAN @ CLEF 2016. URL: http://pan.webis.de/ (visited
on 2016-07-27).

[29] Hweehwa Pang, Jialie Shen, and Ramayya Krishnan.
“Privacy-Preserving Similarity-Based Text Retrieval”. In:
ACM Transactions on Internet Technology 10.1 (2010),
4:1–4:39.

[30] Kim Parker, Amanda Lenhart, and Kathleen Moore. “The
Digital Revolution and Higher Education. College Presidents,
Public Differ on Value of Online Learning”. In: Pew Internet
& American Life Project (2011).

[31] Benny Pinkas, Thomas Schneider, and Michael Zohner.
“Faster Private Set Intersection Based on OT Extension”. In:
Proceedings of the 23rd USENIX Security Symposium. 2014,
pp. 797–812.

[32] Martin F. Porter. “An algorithm for suffix stripping”. In:
Program 14.3 (1980), pp. 130–137.

[33] Martin Potthast. “Technologies for Reusing Text from the
Web”. Dr. rer. nat. thesis. Bauhaus-Universität Weimar, 2012.

[34] Martin Potthast, Steve Göring, Paolo Rosso, and Benno Stein.
“Towards Data Submissions for Shared Tasks: First
Experiences for the Task of Text Alignment”. In: Working
Notes for the CLEF 2015 Conference. 2015.

[35] Martin Potthast, Matthias Hagen, Benno Stein,
Jan Graßegger, Maximilian Michel, Martin Tippmann, and
Clement Welsch. “ChatNoir: A Search Engine for the
ClueWeb09 Corpus”. In: Proceedings of the 35th
International ACM Conference on Research and
Development in Information Retrieval. ACM. 2012,
pp. 1004–1004.

[36] Martin Potthast, Matthias Hagen, Michael Völske, and
Benno Stein. “Crowdsourcing Interaction Logs to Understand
Text Reuse from the Web”. In: Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics. Vol. 1. 2013, pp. 1212–1221.

[37] Martin Potthast, Benno Stein, Alberto Barrón-Cedeño, and
Paolo Rosso. “An Evaluation Framework for Plagiarism
Detection”. In: Proceedings of the 23rd International
Conference on Computational Linguistics: Posters.
Association for Computational Linguistics. 2010,
pp. 997–1005.

[38] Martin Potthast, Benno Stein, Andreas Eiselt,
Alberto Barrón-Cedeno, and Paolo Rosso. “Overview of the
1st International Competition on Plagiarism Detection”. In:
Working Notes for the CLEF 2009 Conference. 2009.

[39] Stephen E Robertson and K Sparck Jones. “Relevance
Weighting of Search Terms”. In: Journal of the American
Society for Information Science 27.3 (1976), pp. 129–146.

[40] Stephen E. Robertson, Steve Walker, Susan Jones,
Micheline M. Hancock-Beaulieu, and Mike Gatford. “Okapi
at TREC-3”. In: Proceedings of the Third Text REtrieval
Conference. National Institute of Standards and Technology,
1994, p. 109.

http://blog.ericgoldman.org/archives/2008/03/clickthrough_ag.htm
http://blog.ericgoldman.org/archives/2008/03/clickthrough_ag.htm
https://golang.org/
https://developers.google.com/protocol-buffers
http://webis15.medien.uni-weimar.de/data/chatnoir-ranking.pdf
http://webis15.medien.uni-weimar.de/data/chatnoir-ranking.pdf
http://pan.webis.de/

[41] Vassil Roussev. “An evaluation of forensic similarity hashes”.
In: Digital Investigation 8 (2011), S34–S41.

[42] Gerard Salton, Anita Wong, and Chung-Shu Yang. “A Vector
Space Model for Automatic Indexing”. In: Communications
of the ACM 18.11 (1975), pp. 613–620.

[43] Bharath K. Samanthula, Gerry Howser, Yousef Elmehdwi,
and Sanjay Madria. “An Efficient and Secure Data Sharing
Framework using Homomorphic Encryption in the Cloud”.
In: Proceedings of the 1st International Workshop on Cloud
Intelligence. ACM. 2012, 8:1–8:8.

[44] Miguel A. Sanchez-Perez, Grigori Sidorov, and
Alexander Gelbukh. “A Winning Approach to Text
Alignment for Text Reuse Detection at PAN 2014”. In:
Working Notes for the CLEF 2014 Conference. 2014.

[45] Thorvald Sørensen. “A method of establishing groups of
equal amplitude in plant sociology based on similarity of
species and its application to analyses of the vegetation on
Danish commons”. In: Biologiske Skrifter 5 (1948), pp. 1–34.

[46] Karen Spärck Jones. “A statistical interpretation of term
specificity and its application in retrieval”. In: Journal of
documentation 28.1 (1972), pp. 11–21.

[47] Benno Stein, Sven Meyer zu Eissen, and Martin Potthast.
“Strategies for Retrieving Plagiarized Documents”. In:
Proceedings of the 30th Annual International ACM
Conference on Research and Development in Information
Retrieval. ACM. 2007, pp. 825–826.

[48] The Lemur Project. The Clueweb09 Dataset. 2009. URL:
http://lemurproject.org/clueweb09/ (visited on 2016-07-27).

[49] Turnitin. Plagiarism Report. 2013. URL:
http://turnitin.com/en_us/resources/blog/421-general/1660-
plagiarism-report-infographic (visited on 2016-07-27).

[50] Turnitin. Technology to Improve Student Writing. 2016. URL:
http://turnitin.com/ (visited on 2016-07-27).

[51] Nik Unger, Sahithi Thandra, and Ian Goldberg. Elxa:
Scalable Privacy-Preserving Plagiarism Detection. Tech. rep.
2016-07. CACR, 2016. URL:
http://cacr.uwaterloo.ca/techreports/2016/cacr2016-07.pdf.

[52] Dinusha Vatsalan, Peter Christen, and Vassilios S. Verykios.
“A taxonomy of privacy-preserving Record linkage
techniques”. In: Information Systems 38.6 (2013),
pp. 946–969.

[53] Hugo Zaragoza, Nick Craswell, Michael J Taylor,
Suchi Saria, and Stephen Robertson. “Microsoft Cambridge
at TREC 13: Web and Hard Tracks”. In: Proceedings of the
13th Text REtrieval Conference. Vol. 4. 2004.

A. MAPREDUCE JOB STRUCTURE
Our prototype implementation of Elxa’s source retrieval scheme,

described in §4, is implemented using Apache Hadoop. Hadoop
MapReduce jobs include two stages: mappers, which read input
key/value pairs and produce intermediate key/value pairs; and re-
ducers, which read all intermediate values with the same key and
produce output key/value pairs. Our root server listens on a TCP
port using TLS with mandatory client authentication, and com-
municates with nodes using custom Google Protocol Buffer struc-
tures [15]. This binary encoding is extremely efficient, minimizing
the amount of network traffic. We developed a node implementa-
tion based on the original HEB13 Python code.

The client nodes are expected to perform document submission
regularly. Each node reads the set of unsubmitted documents, gen-

erates the snippets, and submits them to the root. Our prototype
uses the MurmurHash3 non-cryptographic hash function [3] to im-
plement the CMSes. All documents submitted in a single session
are stored within a single Hadoop sequence file—an efficient binary
format storing key/value pairs—in the Hadoop distributed filesys-
tem. Each input key in the sequence file is a randomly selected
identifier, and the input values are structures consisting of one or
more snippets. Since each snippet is stored with a submitter and
document identifier, sequence files can be merged without conflicts.
This capability allows the root to optimize performance based on
the Hadoop block size.

When a query is submitted to the root, it initiates two MapRe-
duce jobs. The first job is responsible for counting the number of
documents in the collection, the number of words in the collection,
the number of snippets in the collection, and the number of docu-
ments containing each keyword in the query. These values enable
the root to compute N and id f (qi) for each keyword qi (see Equa-
tion 1), as well as avdl (see Equation 3). We set the system param-
eters to the standard values of k1 = 2 and b = 0.75 [23, p.233].

The second MapReduce job uses the counts computed by the
first job to produce search results. The mapper computes the BM25
scores for all snippets contained in a sequence file and outputs a set
of document identifiers, and their associated snippets, sorted by de-
creasing score. All output keys are set to the same value, ensuring
that all data is sent to a single reducer. The reducer merges the list
of matches, keeping them sorted by BM25 score, and outputs the
five documents with the highest scores. We use the same reducer
implementation for the optional combiner stage in order to achieve
negligible bandwidth requirements (i.e., each node in the cluster
sends five or fewer documents to the reducer for each job).

The counting job is not strictly necessary in this process, espe-
cially as the database scales up—in a real large-scale deployment,
approximate IDF values would be sufficient. Instead of performing
actual document counts for the IDF, the root could simply refer to
a static frequency table. Any words that are not found in the fre-
quency table could be assumed to have some base frequency. By
eliminating the counting job, each query can be performed approx-
imately twice as quickly.

B. CMS SIZE CALIBRATION
When deploying Elxa, one should choose the CMS size based on

the specific corpus being used. In this appendix, we show an ex-
ample of a CMS stored by the root and discuss a general procedure
for configuring CMS sizes.

To demonstrate the structure of snippets, we processed the text of
this paper using our document submission client. Elxa breaks this
document into 95 snippets, each represented by a CMS. The CMS
size normally used by our implementation is too large to include
here, but for illustrative purposes we processed the document using
a smaller size. The first snippet, which spans the initial sentences
of the abstract, is encoded by the following 10×25 CMS:

8 3 1 2 3 1 1 4 3 4 1 2 4 7 1 1 2 3 3 1 1 3 1 1 3
2 1 3 2 3 5 2 1 1 1 2 3 5 5 2 3 2 1 0 1 1 5 4 2 7
1 4 2 0 1 0 6 4 3 4 3 3 5 0 1 2 3 3 0 8 0 0 1 2 8
1 5 1 0 1 3 2 2 4 3 0 3 0 3 2 2 2 7 1 4 1 4 4 6 3
2 2 2 1 1 1 3 4 5 4 1 2 4 2 3 7 2 0 0 3 4 4 1 4 2
3 1 2 6 2 0 3 5 0 4 5 4 4 3 1 1 4 0 2 2 2 0 3 5 2
4 0 2 4 3 3 1 2 4 0 2 5 1 5 3 2 3 3 1 6 1 1 4 3 1
2 4 3 1 3 1 3 1 3 3 1 5 1 1 5 2 2 2 1 5 2 5 6 1 1
1 1 4 3 1 2 1 3 7 3 0 3 1 4 5 3 2 2 1 3 2 5 3 3 1
7 1 2 3 2 0 3 1 3 5 3 3 2 1 1 3 5 1 0 1 3 5 5 2 2

The best approach to selecting the CMS size for a real deploy-
ment is to begin by choosing a desired error rate. Higher error

http://lemurproject.org/clueweb09/
http://turnitin.com/en_us/resources/blog/421-general/1660-plagiarism-report-infographic
http://turnitin.com/en_us/resources/blog/421-general/1660-plagiarism-report-infographic
http://turnitin.com/
http://cacr.uwaterloo.ca/techreports/2016/cacr2016-07.pdf

Table 2: The true positives encountered by the root

FREQUENCY WORD TOKENS

1 abstract, abuse, academic, another, assem-
bling, attractive, authors, centralized, challeng-
ing, completely, conferences, contents, database,
databases, document, documents, dramatically,
e, educational, effectiveness, ensure, entities,
facing, g, identical, improves, institutions, in-
troduces, journals, large, legal, making, multi-
ple, must, number, one, operator, papers, plagia-
rized, preserving, problem, products, revealed,
scalable, source, submitted, submitting, target,
techniques, today, typically, wish, work

2 issues, privacy

Table 3: The false positives encountered by the root

FREQUENCY WORD TOKENS

1 $750,000,000, £127,500, 1,195, 18–4, 36532,
bipm, birds-parrot, californian-based, datis,
earth/shield, ed7/k2, episodically, gas-
exchange, gershuny, mizzi, oversubscribe,
pictures/worcester, reassembled, s-bus, sela,
unmuzzled, withy

2 gas-exchange

rates will decrease the effectiveness of the source retrieval proce-
dure, but will reveal less information to the root. Given an error
rate, the total number of cells in the CMS should be adjusted until
the optimal shape configuration yields the desired rate; this pro-
cedure minimizes the storage and network overhead for the given
performance-privacy tradeoff. The optimal shape for a given cell
count depends on the number of words stored in a snippet.

C. ROOT ATTACK CAPABILITIES
In this appendix, we show examples of the information that the

root can learn by performing dictionary attacks.
Following the approach described in Appendix B, we used our

Elxa client to generate 9× 167 snippets for the text of this docu-
ment; this CMS size is appropriate for conference papers, which
often use longer words than typical English documents. To demon-
strate the type of information that can be recovered from snippets,
we performed a dictionary attack on the first snippet. Table 2 lists

the word frequencies correctly recovered from the snippet (i.e., true
positives), and Table 3 lists the recovered frequencies that were not
in the original text (i.e., false positives). For ease of presentation,
the tables group words by frequency, and the words are shown un-
stemmed (in a true deployment, all words in the snippet would be
passed through the Porter word stemmer before being hashed). The
attack failed to recover “Elxa” from the snippet, since it was not in
the dictionary; this was the only false negative. Even if the attacker
could unerringly classify the tokens in Table 3 as false positives,
recovering the original text from the data in Table 2 is challenging.

In addition to analyzing the snippets in its database, the root can
learn information about documents by performing dictionary at-
tacks on queries. To demonstrate this attack, we used our source
retrieval implementation to generate search queries for this paper.
The client produced 175 queries. Normally, most of these queries
would be suppressed because they would match potential sources
that were already downloaded. The following ten queries were ex-
cerpted from the complete list:

1. disclosur plagiar aggreg detect sensit prohibit content potenti law
involv

2. unstructur usabl user similar interact long look elxa object size
3. sourc reason retriev keyword statist
4. case lower last stemmer sentenc merg fewer four repeat pass
5. cryptosystem keygen dimension scalar word multipl share plain-

text support proceed
6. duplic respect proport remain approxim near unrel elxa stabl

grow
7. eyal plagiar sudan benni madhu detect chor kushilevitz
8. build marcinkiewicz plagiar annot marcus ann beatric detect san-

torini penn
9. danish plant sociolog potthast thorvald common establish ampli-

tud martin analys
10. uner group eas snippet attack negat correct fail recov present

Note that the keywords have been stemmed, so some information
about word form is unavailable to the root. The root would not
learn any keywords that were not contained in its dictionary. Even
with a fully comprehensive dictionary, recovering the original text
of this paper from these queries would be extremely difficult.

While the words recovered from snippets or queries may reveal
information like the topic of the document, this is also the type of
information that is needed to perform plagiarism detection.

	Introduction
	Related Work
	Plagiarism Detection
	Private Data Sharing

	Goals and Architecture
	Participants and Capabilities
	Design Goals
	Architectural Overview

	Source Retrieval
	Non-Private Approach
	Privacy Preservation Overview
	Snippet Generation
	Private Search Queries
	Implementation

	Text Alignment
	Non-Private Approach
	Privacy Preservation
	Private Similarity Computation
	Implementation

	Security Analysis
	Evaluation
	Source Retrieval Performance
	Text Alignment Performance

	Conclusion
	MapReduce Job Structure
	CMS Size Calibration
	Root Attack Capabilities

