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Abstract. Tor is one of the most widely used privacy enhancing tech-
nologies for achieving online anonymity and resisting censorship. While
conventional wisdom dictates that the level of anonymity offered by Tor
increases as its user base grows, the most significant obstacle to Tor
adoption continues to be its slow performance. We seek to enhance Tor’s
performance by offering techniques to control congestion and improve
flow control, thereby reducing unnecessary delays.
To reduce congestion, we first evaluate small fixed-size circuit windows
and a dynamic circuit window that adaptively re-sizes in response to
perceived congestion. While these solutions improve web page response
times and require modification only to exit routers, they generally offer
poor flow control and slower downloads relative to Tor’s current design.
To improve flow control while reducing congestion, we implement N23,
an ATM-style per-link algorithm that allows Tor routers to explicitly
cap their queue lengths and signal congestion via back-pressure. Our
results show that N23 offers better congestion and flow control, resulting
in improved web page response times and faster page loads compared to
Tor’s current design and other window-based approaches. We also argue
that our proposals do not enable any new attacks on Tor users’ privacy.

1 Introduction

Tor [10] is a distributed circuit-switching overlay network consisting of over
two-thousand volunteer-run Tor routers operating around the world. Tor clients
achieve anonymity by source-routing their traffic through three Tor routers using
onion routing [14].
Context. Conventional wisdom dictates that the level of anonymity provided by
Tor increases as its user base grows [8]. Another important, but often overlooked,
benefit of a larger user base is that it reduces suspicion placed on users simply
because they use Tor. Today, there are an estimated 150 to 250 thousand daily
Tor users [20]. However, this estimate has not increased significantly since 2008.

⋆ Work was done at University of Colorado and University of California, San Diego.
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One of the most significant road blocks to Tor adoption is its excessively high
and variable delays, which inhibit interactive applications such as web browsing.

Many prior studies have diagnosed a variety of causes of this high latency
(see Dingledine and Murdoch [11] for a concise summary). Most of these studies
have noted that the queuing delays often dominate the network latencies of rout-
ing packets through the three routers. These high queuing delays are, in part,
caused by bandwidth bottlenecks that exist along a client’s chosen circuit. As
high-bandwidth routers forward traffic to lower-bandwidth downstream routers,
the high-bandwidth router may be able to read data faster than it can write
it. Because Tor currently has no explicit signaling mechanism to notify senders
of this congestion, packets must be queued along the circuit, introducing po-
tentially long and unnecessary delays for clients. While recent proposals seek
to re-engineer Tor’s transport design, in part, to improve its ability to handle
congestion [18,29,36], these proposals face significant deployment challenges.
Improving Congestion and Flow Control. To reduce the delays intro-
duced by uncontrolled congestion in Tor, we design, implement, and evaluate two
classes of congestion and flow control. First, we leverage Tor’s existing end-to-end
window-based flow control framework and evaluate the performance benefits of
using small fixed-size circuit windows, reducing the amount of data in flight that
may contribute to congestion. We also design and implement a dynamic window
resizing algorithm that uses increases in end-to-end circuit round-trip time as
an implicit signal of incipient congestion. Similar solutions are being considered
for adoption in Tor to help relieve congestion [6], and we offer a critical analysis
to help inform the discussion. Window-based solutions are appealing, since they
require modifications only to exit routers.

Second, we offer a fresh approach to congestion and flow control inspired by
standard techniques from Asynchronous Transfer Mode (ATM) networks. We
implement a per-link credit-based flow control algorithm called N23 [19] that
allows Tor routers to explicitly bound their queues and signal congestion via
back-pressure, reducing unnecessary delays and memory consumption. While
N23 offers these benefits over the window-based approaches, its road to deploy-
ment may be slower, as it may require all routers along a circuit to upgrade.
Evaluation. We conduct a holistic experimental performance evaluation of the
proposed algorithms using the ModelNet network emulation platform [35] with
realistic traffic models. We show that the window-based approaches offer up to
65% faster web page response times relative to Tor’s current design. However,
they offer poor flow control, causing bandwidth under-utilization and ultimately
resulting in poor download time. In contrast, our N23 experiments show that
delay-sensitive web clients experience up to 65% faster web page responses and
a 32% decrease in web page load times compared to Tor’s current design.

2 Tor Background

The Tor network is a decentralized circuit-switching overlay consisting of volun-
teer-run Tor routers hosted around the world. Tor offers anonymity to clients by
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Fig. 1: A Tor router’s queuing architecture

employing a layered encryption scheme [14] with three Tor routers. All data is
sent in fixed-sized 512-byte units called cells. In general, the client selects routers
to use on a circuit taking into account their bandwidth capacities, in order to
balance the traffic load over the available router bandwidth. The first router
on a circuit (called an “entry guard”) is chosen carefully to reduce the threat
of profiling and the predecessor attack [38]. Upon receiving a cell, the router
removes its layer of encryption and forwards the cell to the next router on the
circuit. Once the final (exit) router in the circuit removes its layer of encryption,
the client’s traffic is forwarded to the destination. A prior study found that the
majority of Tor traffic by connection is interactive HTTP [21], and most of this
traffic volume flows from the destination to the client. More details about Tor can
be found in its design document [10] and its evolving protocol specification [9].

3 Tor’s Approach to Congestion and Flow Control

Since the Tor network consists of volunteer-run routers from across the world,
these routers have varying and often limited amounts of bandwidth available to
relay Tor traffic. Consequently, as clients choose their circuits, some routers have
large amounts of bandwidth to offer, while others may be bandwidth bottlenecks.
In order for Tor to offer the highest degree of performance possible, it is necessary
to have effective mechanisms in place to ensure steady flow control, while also
detecting and controlling congestion. In this section, we discuss the many features
that directly or indirectly impact congestion and flow control in Tor.

3.1 Congestion and Flow Control Mechanisms

Pairwise TCP. All packets sent between Tor routers are guaranteed to be
delivered reliably and in-order by using TCP transport. As a result of using TCP,
communications between routers can be protected with TLS link encryption.
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However, several circuits may be multiplexed over the same TCP connections,
which could result in an unfair application of TCP’s congestion control [29].

Tiered Output Buffers. Each Tor router’s internal queuing architecture is
illustrated in Figure 1. When a Tor router receives a cell on one of its TCP con-
nections, the cell is first copied from the connection’s receive kernel buffer into
an application-layer input buffer to be decrypted. Next, the cell is pushed onto a
FIFO circuit queue for the cell’s respective circuit. For each outgoing TCP con-
nection, a FIFO output buffer is maintained. The output buffer has a fixed size
of 32KiB, while the circuit queue has no explicit bound, but the circuit window
size restricts how many cells may be in flight (described below). Since multiple
circuits are often multiplexed over the same TCP connection, when there is space
available in the outgoing connection’s respective output buffer, the router must
choose which circuits’ cells to copy onto the output buffer. Initially, cells were
chosen by round-robin selection across circuits. Recently, circuit prioritization
has been proposed to give burstier circuits that likely correspond to interactive
traffic priority over long-lived, bulk circuits [34].

Circuit and Stream Windows. Tor uses two layers of end-to-end window-
based flow control between the exit router and the client to ensure steady flow
control. First, a circuit window restricts how many cells may be in flight per
circuit. By default, Tor uses a fixed 500KiB (1000 cell) circuit window. For
every 50KiB (100 cells) received, an acknowledgment cell called a SENDME is sent,
informing the sender that they may forward another 100 cells to the receiver.1
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Fig. 2: The exit router’s cir-
cuit queue delays for a
300KiB download

Within each circuit window is a stream window

of 250KiB (500 cells) to provide flow control (or
fairness) within a circuit. The receiver replies with
a stream-level SENDME for every 25KiB (50 cells)
received. On receiving a stream-level SENDME, the
sender may forward another 50 cells.

Both the stream-level and circuit-level win-
dows are relatively large and static. To illustrate
how this can degrade performance, consider the
following scenario. Suppose a client downloads
files through a circuit consisting of 10MiB/s entry
and exit routers and a 128KiB/s middle router.
Since the exit router can read data from the des-
tination server faster than it can write it to its
outgoing connection with the middle router, and the reliable TCP semantics
preclude routers from dropping cells to signal congestion, the exit router must
buffer up to one full circuit window (500KiB) worth of cells. Furthermore, as
shown in Figure 2, these cells often sit idly for several seconds while the buffer
is slowly emptied as SENDME cells are received. Since cells may travel down a
circuit in large groups of up to 500KiB followed by periods of silence while the

1 Due to a bug, clients running Tor 0.0.0–0.2.1.19 erroneously reply with circuit-
level SENDME cells after receiving 101 cells (rather than 100 cells).
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exit router waits for SENDME replies, Tor’s window-based flow control does not
always keep a steady flow of cells in flight.
Token Bucket Rate Limiting. In order to allow routers to set limits on the
amount of bandwidth they wish to devote to transiting Tor traffic, Tor offers
token bucket rate limiting. Briefly, a router starts with a fixed amount of tokens,
and decrements their token count as cells are sent or received. When the router’s
token count reaches zero, the router must wait to send or receive until the tokens
are refilled. To reduce Tor’s CPU utilization, tokens are refilled only once per
second. However, it has been previously observed that refilling the tokens so
infrequently contributes in part to Tor’s overall delays [5].

3.2 Alternate Proposals to Reduce Congestion

There have been several recent proposals aimed specifically at reducing Tor’s
congestion. First, Tor has incorporated adaptive circuit-building timeouts that
measure the time it takes to build a circuit, and eliminate circuits that take an
excessively long time to construct [4]. The intuition is that circuits that build
slowly are highly congested, and would in turn offer the user poor performance.
While this approach likely improves the users’ quality of service in some cases, it
does not help to relieve congestion that may occur at one or more of the routers
on a circuit after the circuit has been constructed.

In addition, user-level rate limiting has been proposed to throttle over-active
or bulk downloading users. Here, the idea is to reduce the overall bandwidth
consumption by bulk downloaders by using per-connection token bucket rate
limiting at the entry guard. Early experiments indicate faster downloads for small
file downloaders (the majority of Tor users), while harming bulk downloaders [7].

Finally, incentive schemes [17,24] have been proposed to reward users for
operating fast Tor routers by offering them prioritized service. These proposals
seek to reduce congestion and improve performance by increasing the bandwidth
available for relaying Tor users’ traffic.

4 Improving Tor’s Congestion and Flow Control

Our primary goal is to improve Tor’s performance, specifically by better un-
derstanding and improving Tor’s congestion and flow control. We consider two
broad classes of solutions. First, we wish to understand how much improvement
is possible simply by adjusting Tor’s existing end-to-end window-based flow con-
trol mechanisms to reduce the amount of data in flight, and thereby mitigate
congestion. We also evaluate an end-to-end congestion control technique that
enables exit Tor routers to infer incipient congestion by regarding increases in
end-to-end round-trip time as a congestion signal. Second, we consider a fresh
approach to congestion and flow control in Tor, eliminating Tor’s end-to-end
window-based flow control entirely, and replacing it with ATM-style, per-link
flow control that caps routers’ queue lengths and applies back-pressure to up-
stream routers to signal congestion.
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4.1 Improving Tor’s Existing End-to-end Flow Control

We first consider whether adjusting Tor’s current window-based flow control can
offer significant performance improvements. Keeping Tor’s window-based mech-
anisms is appealing, as solutions based on Tor’s existing flow control framework
may be deployed immediately, requiring modifications only to the exit routers,
not clients or non-exit routers.
Small Fixed-size Circuit Windows. The smallest circuit window size pos-
sible without requiring both senders and receivers to upgrade is 50KiB (100
cells, or one circuit-level SENDME interval). We evaluate how fixed 50KiB circuit
windows impact clients’ performance.2

Dynamic Circuit Windows. It has been shown that protocols that use a
small, fixed end-to-end window may achieve suboptimal throughput [28]. To
avoid a potential loss in throughput that could result from an under-sized win-
dow, we next consider an algorithm that initially starts with a small, fixed circuit-
window and dynamically increases the window size in response to positive end-to-
end latency feedback. Inspired by latency-informed congestion control techniques
for IP networks [3,37], we propose an algorithm that uses increases in perceived
end-to-end circuit round-trip time (RTT) as a signal of incipient congestion.

The algorithm works as follows. Initially, each circuit’s window size starts
at 100 cells. First, the sender calculates the circuit’s end-to-end RTT using the
circuit-level SENDME cells, maintaining the minimum RTT (rttmin) and maximum
RTT (rttmax) observed for each circuit. We note that rttmin is an approximation
of the base RTT, where there is little or no congestion on the circuit. Next,
since RTT feedback is available for every 100 cells,3 the circuit window size
is adjusted quickly using an additive increase, multiplicative decrease (AIMD)
window scaling mechanism based on whether the current RTT measurement
(rtt) is less than the threshold T , defined in Equation 1. This threshold defines
the circuit’s tolerance to perceived congestion.

T = (1− α)× rttmin + α× rttmax (1)

Choosing a small α value ensures that the threshold is close to the base RTT, and
any increases beyond the threshold implies the presence of congestion along the
circuit.4 For each RTT measurement (e.g., each received circuit-level SENDME),
the circuit window size (in cells) is adjusted according to Equation 2.

new window(rtt) =

{

old window + 100 if rtt ≤ T

⌊old window/2⌋ otherwise
(2)

Finally, we explicitly cap the minimum and maximum circuit window sizes at
100 and 1000 cells, respectively.5 Note that for long-lived circuits, rttmin may

2 Due to the aforementioned bug, in practice, the window size should be 101 cells.
3 Similar to the 50KiB windows, SENDME cells may be available after 101 cells.
4 For our experiments, we use α = 0.25.
5 Note that a selfish Tor client could attempt to increase their circuit window by pre-
emptively acknowledging data segments before they are actually received. Prior work
in mitigating similar behavior in selfish TCP receivers may be applied here [30,32].
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Fig. 3: N23 credit-based flow control in Tor

become increasingly small and rttmax may grow very large. In practice, these
values should decay over time, for example, using an exponentially weighted
moving average of each respective parameter.

4.2 ATM-style Congestion and Flow Control for Tor

Because Tor’s flow control works at the circuit’s edges—the client and the exit
router—we seek to improve performance by implementing per-link flow con-
trol to ensure a steady flow of cells while reducing congestion at the interme-
diate routers. Implementing per-link flow control in Tor resembles the problem
of link-by-link flow control (LLFC) in ATM networks. While the goals of Tor
and ATM are certainly different, there are many similarities. Both networks are
connection-oriented, in the sense that before applications can send or receive
data, virtual circuits are constructed across multiple routers or switches, and
both have fixed-sized cells. Furthermore, it has been shown that ATM’s credit-
based flow control approaches, such as the N23 scheme, eliminate cell loss due to
buffer overflows [16], a feature that makes such approaches similar to Tor, where
no packets may be dropped to signal congestion.
N23 Flow Control for Tor. Figure 3 depicts the N23 scheme that we in-
tegrated into Tor, and it works as follows. First, when a circuit is built, each
router along the circuit is assigned an initial credit balance of N2 + N3 cells,
where N2 and N3 are system parameters. N2 cells is the available steady state
buffering per circuit, N3 cells is the allowed excess buffering, and the circuit’s
queue length is strictly upper bounded by N2+N3 cells. In general, N2 is fixed
at the system’s configuration time, but N3 may change over a circuit’s lifetime.

When a router forwards a cell, it decrements its credit balance by one for
that cell’s circuit. Each router stops forwarding cells if its credit balance reaches
zero. Thus, routers’ circuit queues are upper bounded by N2 + N3 cells, and
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congestion is indicated to upstream routers through this back-pressure. Next, for
every N2 cells forwarded, the downstream router sends a flow control cell to the
upstream router that contains credit information reflecting its available circuit
queue space. On receiving a flow control cell, the upstream router updates the
circuit’s credit balance and may forward cells only if the credit balance is greater
than zero.

Adaptive Buffer Sizes and Congestion Control. The algorithm as de-
scribed assumes a static N3. We also developed an adaptive algorithm that
reduces the N3 value when there is downstream congestion, which is detected
by monitoring the delay that cells experience in the connection’s output buffer.
When the congestion subsides, N3 can increase again. The value of N3 is up-
dated periodically and is bounded by a minimum and a maximum value (100
and 500 cells, respectively).
Advantages. The N23 algorithm has two important advantages over Tor’s
current flow control. First, the size of the circuit queue is explicitly capped, and
guaranteed to be no more than N2 + N3 cells. This also ensures steady flow
control, as routers typically have cells available to forward. Tor’s current flow
control algorithm allows the circuit queue of a circuit’s intermediate routers to
grow up to one circuit window in size, which not only wastes memory, but also
results in unnecessary delays due to congestion. In contrast, for typical parameter
values (N3 = 500 and N2 = 10), N23 ensures a strict circuit queue bound of
510 cells, while these queues currently can grow up to 1000 cells in length.

The second advantage is that adaptive N3 reacts to congestion within a single
link RTT. When congestion occurs at a router, the preceding router in the circuit
will run out of credit and must stop forwarding until it gets a flow control cell.

5 Experiments and Results

To empirically demonstrate the efficacy of our proposed improvements, we offer
a whole-network evaluation of our congestion and flow control algorithms using
the ModelNet network emulation platform [35]. Briefly, ModelNet enables the
experimenter to specify realistic network topologies annotated with bandwidth,
delay and other link properties, and run real code on the emulated network.6

Our evaluation focuses on performance metrics that are particularly impor-
tant to the end-user’s quality of service. First, we measure time-to-first-byte,
which is how long the user must wait from the time they issue a request for
data until they receive the first byte (or until a web client starts to see content
load on their current web page). The time-to-first-byte is two end-to-end circuit
RTTs: one RTT to connect to the destination web server, and a second RTT
to issue a request for data (e.g., HTTP GET) and receive the first byte of data
in response.7 Second, we measure overall download time (including time-to-first-
byte), which is how long the user must wait for their web page to load. For

6 More details about our experimental environment can be found in Bauer et al. [2].
7 Note that there is a proposal being considered to eliminate one of these RTTs [13].
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Fig. 4: A simple topology with a middle router bandwidth bottleneck

all experiments, we use the latest development branch of the Tor source code
(version 0.2.3.0-alpha-dev).8

5.1 Small-scale Analysis

Setup. We emulate the topology depicted in Figure 4 on ModelNet where two
Tor clients compete for service on the same set of routers with a bandwidth
bottleneck at the middle router.9 One client downloads 300KiB, which roughly
corresponds to the size of an average web page [27]. The second client, a bulk
downloader, fetches 5MiB. Both clients pause for a random amount of time
between one and three seconds, and repeat their downloads. Each experiment
concludes after the web client completes 200 downloads. Both clients use the
wget web browser and the destination runs the lighthttpd web server.
End-to-end Window-based Solutions. Figure 5(a) shows that the time-to-
first-byte for a typical web client using stock Tor is 4.5 seconds at the median,
which is unacceptably high for delay-sensitive, interactive web users who must
incur this delay for each web request. In addition, stock Tor’s circuit queues
fluctuate in length, growing up to 250 cells long, and remaining long for many
seconds, indicating queuing delays, as shown in Figure 6(a). Reducing the circuit
window size to 50KiB (e.g., one circuit SENDME interval) offers a median time-to-
first-byte of less than 1.5 seconds, and dynamic windows offer a median time-to-
first-byte of two seconds. In Figure 5(b), we see that the web client’s download
time is influenced by the high time-to-first-byte, and is roughly 40% faster with
50KiB and dynamic windows relative to stock Tor. Also, the circuit queues are
smaller with the 50KiB and dynamic windows (see Figures 6(b) and 6(c)).

The bulk client experiences significantly less time-to-first-byte delays (in Fig-
ure 5(c)) than the web client using stock Tor. This highlights an inherent unfair-
ness during congestion: web clients’ traffic is queued behind the bulk traffic and,
consequently, delay-sensitive clients must wait longer than delay-insensitive bulk
downloaders to receive their first byte of data. Using a small or dynamic window
reduces this unfairness, since the bound on the number of unacknowledged cells
allowed to be in flight is lower.

8 In our evaluation, we refer to unmodified Tor version 0.2.3.0-alpha-dev as stock

Tor, 50KiB (100 cell) fixed windows as 50KiB window, the dynamic window scaling
algorithm as dynamic window, and the N23 algorithm as N23.

9 Note that a 128KiB/s router corresponds to the 65th percentile of routers ranked
by observed bandwidth, as reported by the directory authorities. Thus, it is likely to
be chosen fairly often by clients. Also, prior work [26] found the median round-trip
time between live Tor routers to be about 80ms.
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(c) Bulk client’s time-to-first-byte
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(d) Bulk client’s download time

Fig. 5: Performance comparisons for window approaches in a bottleneck topology
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Fig. 6: Bulk client’s circuit queues at the exit router over the course of a download

However, Figure 5(d) indicates that the bulk client’s download takes signif-
icantly longer to complete with 50KiB windows relative to stock Tor. Thus,
50KiB windows enhance performance for web clients at the cost of slower down-
loads for bulk clients. The bulk clients experience slower downloads because they
keep less data in flight and, consequently, must incur additional round-trip time
delays to complete the download. Dynamic windows offer a middle-ground solu-
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Fig. 7: Download time comparisons for windows in a non-bottleneck network
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Fig. 8: Download time comparisons for Tor and N23 in a non-bottleneck network

tion, as they ameliorate this limitation by offering an improvement in download
time for web clients while penalizing bulk clients less than small windows, but
bulk clients are still penalized relative to stock Tor’s performance.

We next consider the same topology shown in Figure 4, except we replace the
bottleneck middle router with a 10MiB/s router. In such a topology, congestion
is minimal, as evidenced by a median time-to-first-byte of 0.75 s for both the web
and bulk clients (regardless of the window size). However, because the 50KiB
and dynamic windows generally keep less data in flight, these solutions offer
slower downloads relative to stock Tor, as shown in Figures 7(a) and 7(b). We
also found that manipulating Tor’s circuit windows in combination with circuit-
level prioritization offers even more improvement for the web client, while not
further harming the bulk client’s performance. These results are in Appendix A.

Despite the improvements in time-to-first-byte in the presence of bandwidth
bottlenecks, we find that smaller circuit windows may under-utilize the available
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bandwidth10 and the dynamic window scaling algorithm is unable to adjust the
window size fast enough, as it receives congestion feedback infrequently (only
every 100 cells). Also, even in the non-bottleneck topology, the 50KiB window
web client’s time-to-first-byte is higher than the optimal delay from two circuit
RTTs, which is 0.64 s. Lastly, 50KiB windows offer worse flow control than Tor’s
current design, since only 50KiB can be in flight, and the exit router must wait
for a full circuit RTT until more data can be read and sent down the circuit.

Based on these drawbacks, we conclude that in order to achieve an improve-
ment in both time-to-first-byte and download speed, it is necessary to re-design
Tor’s fundamental congestion and flow control mechanisms. We next offer an
evaluation of per-link congestion and flow control for Tor.

Per-link Congestion and Flow Control. We first implemented N23 with
fixed values of N2 and N3 (static N23 ) and then with N3 values that react to net-
work feedback (adaptive N3 ). We disabled Tor’s window-based flow control, so
that exit routers ignored SENDMEs they received from clients. We discuss the re-
sults of adaptive N3 with our large-scale experiments. In this section, we present
the results of N23 for both the bottleneck and non-bottleneck topologies.
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Fig. 9: Circuit queue length
with bottleneck: N3 = 70,
N2 = 20

For the non-bottleneck topology, we see in Fig-
ure 8(b) that N23 provides a substantial improve-
ment in download time for the 5MiB downloads
compared to stock Tor only for higher values of
N3 — 500 cells, comparable to stock Tor’s stream
window size. The graph shows that there is a 25%
decrease in delay for 50% of the bulk downloads
when N23 is used. Since the maximum through-
put is bounded by W/RTT , where W is the link’s
TCP window size and RTT is the link’s round-trip
time, and since N23’s per-link RTT is significantly
smaller than a stock Tor’s complete circuit RTT,
throughput is increased when N23 is used. This
improvement suggests that in non-bottleneck sce-
narios, bulk traffic data cells are unnecessarily slowed down by Tor’s flow control
at the circuit’s edges. For web traffic, Tor’s current flow control and N23 have
similar performance for fixed and adaptive N3, as shown in Figure 8(a). Also,
the median time-to-first-byte is the same for the web and bulk clients at 0.75 s.

For bottleneck scenarios, Figures 10(a) and 10(b) show that smaller values
of N3 improve both the download time and time-to-first-byte for the bursty
web traffic. For example, the web browsing client experiences a 20% decrease in
download time for 80% of the requests when N23 is used. Also, the web client’s
time-to-first-byte is only two seconds for 90% of the requests, whereas for the
stock Tor client, 80% of web requests take more than four seconds to receive
the first byte. Figure 9 shows that the circuit queue length is upper bounded by
N2 +N3 = 90 cells.

10 We note that bandwidth under-utilization may only be a problem if there is not
sufficient demand from Tor clients to fully consume the network’s bandwidth.
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Fig. 10: Performance comparisons for Tor and N23 in a bottleneck topology

To understand how N23 performs with different N2 values, we repeated the
bottleneck experiments while varying that parameter. Although a higher value
for N2 has the undesirable effect of enlarging the circuit buffer, it can be seen
in Figures 10(a) and 10(b) that when N3 is fixed at 100 cells, increasing N2
to 20 cells slightly improves both download time and time-to-first-byte. It can
be observed from Figure 10(a) that time-to-first-byte is significantly improved
by keeping a smaller N3 = 70 and a larger N2 = 20. Decreasing N3 to 70
cells makes up for the increase in the N2 zone of the buffer, which means we
gain the benefits of less flow control overhead, and the benefits of a small buffer
of N2 +N3 = 90 cells. While performance is improved for the web clients, the
bulk client’s time-to-first-byte is not affected greatly, as seen in Figure 10(c), but
its downloads generally take longer to complete, as we see in Figure 10(d). In
addition, adaptive N3 offers improved time-to-first-byte and download times for
the web client, while slowing downloads for the bulk client. By N23 restricting
the amount of data in flight, the bandwidth consumed by bulk clients is reduced,
improving time-to-first-byte and download time for delay-sensitive web clients.

13



0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
50 KiB Window
Dynamic Window
Adaptive N3, N2 = 20

(a) Web client’s time-to-first-byte

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
50 KiB Window
Dynamic Window
Adaptive N3, N2 = 20

(b) Web client’s download time

Fig. 11: Performance results for large-scale experiments

We also evaluate N23 in combination with circuit-level prioritization in a
bottleneck topology. We observe that circuit-level prioritization with N23 offers
no performance benefit over N23 alone. The full results are in Appendix B.

Finally, the bandwidth cost associated with the N23 scheme is relatively low.
For instance, with N2 = 10, a flow control cell must be sent by each router on
the circuit for every 10 data cells forwarded, which requires a 10% bandwidth
overhead per router. For N2 = 20, a flow control cell is sent for every 20 data
cells, which is only a 5% overhead per router. While this cost is higher than Tor’s
window-based flow control (e.g., one stream-level SENDME for every 50 data cells
and one circuit-level SENDME for every 100 data cells, resulting in a 3% overhead
per circuit), the cost of N23 is nonetheless modest.

5.2 Larger-scale Analysis

Setup. We next evaluate the window-based solutions and N23 with adaptive N3
in a more realistic network topology.11 We deploy 20 Tor routers on a ModelNet
topology whose bandwidths are assigned by sampling from the live Tor network.
Each link’s round-trip time is set to 80ms. Next, to generate a traffic workload,
we run 200 Tor clients. Of these, ten clients are bulk downloaders who fetch files
between 1–5MiB, pausing for up to two seconds between fetches. The remaining
190 clients are web clients, who download files between 100–500KiB (typical
web page sizes), pausing for up to 30 seconds between fetches. This proportion
of bulk-to-non-bulk clients approximates the proportion observed on the live
Tor network [21]. To isolate the improvements due to our proposals, circuit-level
prioritization is disabled for this experiment.
Results. For web clients, Figure 11(a) shows that both the 50KiB fixed and dy-
namic windows still offer improved time-to-first-byte. However, both algorithms
perform worse than stock Tor in terms of overall download time, as shown in

11 In this experiment, we only consider N23 with adaptive N3 because in practice, N23
should discover the right buffer size for the given network conditions.

14



Figure 11(b). Note that this observation holds for both web clients and bulk
downloaders. Because smaller windows provide less throughput than larger win-
dows when there is no bottleneck, non-bottlenecked circuits are under-utilized.

N23 with the adaptive N3 algorithm, in contrast, has the ability to react
to congestion quickly by reducing routers’ queue lengths, causing back pressure
to build up. Consequently, our results indicate that N23 offers an improvement
in both time-to-first-byte and overall download time for web clients, while bulk
clients experience roughly the same performance as stock Tor.

These experiments again highlight the potential negative impact of 50KiB
and small dynamic windows, since even in a larger network with a realistic
traffic load, smaller windows offer worse performance for typical delay-sensitive
web requests relative to Tor’s current window size. Thus, to achieve maximal
improvements, we suggest that Tor adopt N23 congestion and flow control.

6 Discussion

Having empirically evaluated our proposed congestion and flow control approaches,
we next discuss a variety of open issues.

6.1 Limitations of Experiments and Results

The results presented in Section 5 generally show an improvement in time-to-
first-byte and download time with N23 flow control relative to end-to-end win-
dows. However, these results were obtained in a testbed environment with a
single, artificial traffic load; thus, an analysis of expected performance as the
traffic load varies, on the live Tor network with real traffic loads, and with ex-
haustive N23 parameter configurations is future work.

6.2 Incremental Deployment

In order for our proposed congestion and flow control mechanisms to be practical
and easily deployable on the live Tor network, it is important that any modifica-
tions to Tor’s router infrastructure be incrementally deployable. Any solutions
based on Tor’s existing window-based flow control require upgrades only to the
exit routers; thus they can be slowly deployed as router operators upgrade. N23
may also be deployed incrementally, however, clients may not see substantial
performance benefits until a large fraction of the routers have upgraded.

6.3 Anonymity Implications

A key question to answer is whether improving Tor’s performance and reduc-
ing congestion enables any attack that was not previously possible. It is well
known that Tor is vulnerable to congestion attacks wherein an attacker con-
structs circuits through a number of different routers, floods them with traffic,
and observes if there is an increase in latency on a target circuit, which would
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indicate a shared router on both paths [22]. More recent work has suggested
a solution that would mitigate bandwidth amplification variants of this attack,
but not the shared router inference part of the attack [12]. We believe that by
reducing congestion (and specifically, by bounding queue lengths), our proposed
techniques may increase the difficulty of mounting congestion attacks.

However, if only a fraction of the routers upgrade to our proposals and if
clients only choose routers that support the new flow control, then an adversary
may be able to narrow down the set of potential routers that a client is using.
Thus, it is important to deploy any new flow control technique after a large
fraction of the network has upgraded. Such a deployment can be controlled
by setting a flag in the authoritative directory servers’ consensus document,
indicating that it is safe for clients to use the new flow control.

Another well-studied class of attack is end-to-end traffic correlation. Such
attacks endeavor to link a client with its destination when the entry and exit
points are compromised, and these attacks have been shown to be highly accu-
rate [1,23,25,31,33]. Reducing latency might improve this attack; however, Tor
is already highly vulnerable, so there is little possibility for additional risk.

Finally, previous work has shown that network latency can be used as a side
channel to infer a possible set of client locations [15]. By decreasing the variance
in latency, we might expose more accurate RTT measurements, thus improving
the effectiveness of this attack. However, reducing congestion does not enable
a new attack, but rather may potentially increase the effectiveness of a known
attack. To put this attack in perspective, Tor’s design has already made many
performance/anonymity trade-offs, and thus, we believe that our performance
improvements outweigh any potential decrease in anonymity brought about by
reducing the variance in latency.

7 Conclusion

We seek to improve Tor’s performance by reducing unnecessary delays due to
poor flow control and excessive queuing at intermediate routers. To this end,
we have proposed two broad classes of congestion and flow control. First, we
tune Tor’s existing circuit windows to effectively reduce the amount of data
in flight. However, our experiments indicate that while window-based solutions
do reduce queuing delays, they tend to suffer from poor flow control, under-
utilizing the available bandwidth, and consequently, smaller windows provide
slower downloads than unmodified Tor.

To solve this problem, we offer a fresh approach to congestion and flow control
in Tor by designing, implementing, and experimentally evaluating a per-link
congestion and flow control algorithm from ATM networks. Our experiments
indicate that this approach offers the promise of faster web page response times
and faster overall web page downloads.
Acknowledgments. We thank the anonymous reviewers and our shepherd,
Roger Dingledine, for their helpful comments and suggestions. We also thank Ken
Yocum for his invaluable assistance with ModelNet. This work was supported in

16



part by NSERC, MITACS, The Tor Project, Qatar University, National Science
Foundation grants NSF-0433668, DGE-0841423, a CRA/NSF Computing Inno-
vation Fellowship, the Office of Naval Research MURI grant N000140911081,
and by generous research, operational and/or in-kind support from the UCSD
Center for Networked Systems (CNS).

References

1. Bauer, K., McCoy, D., Grunwald, D., Kohno, T., Sicker, D.: Low-resource routing
attacks against Tor. In: Proceedings of the Workshop on Privacy in the Electronic
Society (WPES 2007). Washington, DC, USA (October 2007)

2. Bauer, K., Sherr, M., McCoy, D., Grunwald, D.: ExperimenTor: A testbed for safe
and realistic Tor experimentation. Technical Report CACR 2011-12. http://www.
cacr.math.uwaterloo.ca/techreports/2011/cacr2011-12.pdf (May 2011)

3. Brakmo, L.S., O’Malley, S.W., Peterson, L.L.: TCP Vegas: New techniques for
congestion detection and avoidance. In: Proceedings of the conference on Com-
munications architectures, protocols and applications. pp. 24–35. SIGCOMM ’94,
ACM, New York, NY, USA (1994)

4. Chen, F., Perry, M.: Improving Tor path selection. https://

gitweb.torproject.org/torspec.git/blob_plain/HEAD:/proposals/

151-path-selection-improvements.txt (July 2008)
5. Dhungel, P., Steiner, M., Rimac, I., Hilt, V., Ross, K.W.: Waiting for anonymity:

Understanding delays in the Tor overlay. In: Peer-to-Peer Computing. IEEE (2010)
6. Dingledine, R.: Prop 168: Reduce default circuit window. https:

//gitweb.torproject.org/torspec.git/blob_plain/HEAD:/proposals/

168-reduce-circwindow.txt (August 2009)
7. Dingledine, R.: Research problem: adaptive throttling of Tor

clients by entry guards. https://blog.torproject.org/blog/

research-problem-adaptive-throttling-tor-clients-entry-guards (Septem-
ber 2010)

8. Dingledine, R., Mathewson, N.: Anonymity loves company: Usability and the net-
work effect. In: Workshop on the Economics of Information Security (June 2006)

9. Dingledine, R., Mathewson, N.: Tor Protocol Specificiation. https://gitweb.

torproject.org/tor.git/blob_plain/HEAD:/doc/spec/tor-spec.txt (2010)
10. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion

router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)
11. Dingledine, R., Murdoch, S.: Performance improvements on Tor or, why Tor is

slow and what we’re going to do about it. http://www.torproject.org/press/
presskit/2009-03-11-performance.pdf (March 2009)

12. Evans, N., Dingledine, R., Grothoff, C.: A practical congestion attack on Tor using
long paths. In: Proceedings of the 18th USENIX Security Symposium (2009)

13. Goldberg, I.: Prop 174: Optimistic data for Tor: Server side. https://trac.

torproject.org/projects/tor/ticket/1795

14. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In:
Proceedings of Information Hiding: First International Workshop (May 1996)

15. Hopper, N., Vasserman, E.Y., Chan-Tin, E.: How much anonymity does network
latency leak? In: Proceedings of ACM CCS (October 2007)

16. Jain, R.: Congestion control and traffic management in ATM networks: Recent
advances and a survey. Computer Networks and ISDN Systems (1995)

17



17. Jansen, R., Hopper, N., Kim, Y.: Recruiting new Tor relays with BRAIDS. In:
Proceedings of the ACM CCS (2010)

18. Kiraly, C., Bianchi, G., Cigno, R.L.: Solving performance issues in anonymiziation
overlays with a L3 approach. University of Trento Information Engineering and
Computer Science Department Technical Report DISI-08-041 (September 2008)

19. Kung, H.T., Blackwell, T., Chapman, A.: Credit-based flow control for ATM net-
works: credit update protocol, adaptive credit allocation and statistical multiplex-
ing. SIGCOMM Comput. Commun. Rev. 24, 101–114 (October 1994)

20. Loesing, K.: Measuring the Tor network: Evaluation of client requests to the di-
rectories. Tor Project Technical Report (June 2009)

21. McCoy, D., Bauer, K., Grunwald, D., Kohno, T., Sicker, D.: Shining light in dark
places: Understanding the Tor network. In: Proceedings of the 8th Privacy En-
hancing Technologies Symposium (July 2008)

22. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of Tor. In: Proceedings of the
2005 IEEE Symposium on Security and Privacy. IEEE CS (May 2005)
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D.: Scalability and accuracy in a large-scale network emulator. SIGOPS Oper. Syst.
Rev. 36, 271–284 (December 2002)

36. Viecco, C.: UDP-OR: A fair onion transport. HotPETS (July 2008)
37. Wang, Z., Crowcroft, J.: Eliminating periodic packet losses in the 4.3-Tahoe BSD

TCP congestion control algorithm. SIGCOMM Comput. Commun. Rev. 22, 9–16
(April 1992)

38. Wright, M.K., Adler, M., Levine, B.N., Shields, C.: The predecessor attack: An
analysis of a threat to anonymous communications systems. ACM Trans. Inf. Syst.
Secur. 7(4), 489–522 (2004)

18



0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
50 KiB Window
Dynamic Window

(a) Web client’s time-to-first byte

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
50 KiB Window
Dynamic Window

(b) Web client’s download time

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
50 KiB Window
Dynamic Window

(c) Bulk client’s time-to-first-byte

0 20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n
Stock Tor
50 KiB Window
Dynamic Window

(d) Bulk client’s download time

Fig. 12: Performance for window-based flow control with circuit prioritization

A End-to-end Windows with Circuit Prioritization

Circuit-level prioritization has been proposed [34] to enable routers to process
bursty circuits ahead of bulk circuits. In this appendix, we evaluate small and
dynamic circuit windows in combination with circuit-level prioritization.12 For
the web client using stock Tor, the time-to-first-byte is reduced from 4.5 seconds
(see Figure 5(a)) to 3 seconds, and the time-to-first-byte for 50KiB and dynamic
windows are roughly the same. However, as shown in Figure 12(a), roughly 25%
of requests experience no significant improvement when using small or dynamic
circuit windows. For these same requests, stock Tor’s large window allows more
data in flight without acknowledgment and, as shown in Figure 12(b), induces
faster downloads (compared to Figure 5(b)). However, for the remaining 75%,
small and dynamic windows offer faster downloads. The bulk client’s time-to-
first-byte and overall download times are not significantly altered by the circuit

12 For all prioritization experiments, we set CircuitPriorityHalflifeMsec to 30 sec-
onds, the current value used on the live Tor network.
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prioritization, as shown in Figures 12(c) and 12(d), relative to non-prioritized
circuit scheduling (see Figures 5(c) and 5(d)). These observations are consistent
with the claims made by Tang and Goldberg [34].

B N23 with Circuit Prioritization

The circuit-level prioritization algorithm enhances the bursty clients’ experience
because it remembers how many cells each circuit has recently sent, and gives
more priority to the circuits that have sent less. For stock Tor, this algorithm
is useful since circuit queues can grow to 1000 cells, which means bulk-traffic
circuits can grow large queues and are able to send continuously. However, with
N23, circuit queue sizes are significantly smaller and are equal for both bulk
and bursty clients. This allows both applications to have a fairer share of the
bandwidth. Therefore, for N23, circuit-level prioritization does not provide any
performance benefits. Figures 13(a)–13(d) depict the results of the performance
of N23 in combination with circuit-level prioritization. Both time-to-first-byte
and download times are unaffected by enabling prioritization.
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Fig. 13: Performance for N23 (N3 = 100, N2 = 20) with circuit prioritization
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