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ABSTRACT
Tor is a network designed for low-latency anonymous com-
munications. Tor clients form circuits through relays that
are listed in a public directory, and then relay their en-
crypted traffic through these circuits. This indirection makes
it difficult for a local adversary to determine with whom a
particular Tor user is communicating. In response, some lo-
cal adversaries restrict access to Tor by blocking each of the
publicly listed relays. To deal with such an adversary, Tor
uses bridges, which are unlisted relays that can be used as al-
ternative entry points into the Tor network. Unfortunately,
issues with Tor’s bridge implementation make it easy to dis-
cover large numbers of bridges. An adversary that hoards
this information may use it to determine when each bridge
is online over time. If a bridge operator also browses with
Tor on the same machine, this information may be sufficient
to deanonymize him. We present BridgeSPA as a method
to mitigate this issue. A client using BridgeSPA relies on
innocuous single packet authorization (SPA) to present a
time-limited key to a bridge. Before this authorization takes
place, the bridge will not reveal whether it is online. We
have implemented BridgeSPA as a working proof-of-concept,
which is available under an open-source licence.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and Protection

General Terms
Security, Design
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1. INTRODUCTION
Tor [13] is an open-source low-latency anonymity network

that sees approximately 250,000 users per day [4]. Tor re-
lies on volunteers to operate relays that forward end users’
traffic. Tor may be used to defeat some forms of Internet
censorship by allowing users to connect to censored web-
sites indirectly via a series of relays and encrypted tunnels
between them. However, as a list of current Tor relays is
easily retrievable from centralized, publicly known directory
authorities, it is trivial for an Internet access provider to
block all connections to Tor by blocking access to IP ad-
dresses of Tor relays. As of June 2011, China blocks Tor via
this method [19].

In an attempt to mitigate the ease of blocking Tor, un-
listed Tor relays (known as “bridges”) are available to pro-
vide alternate entry points to the Tor network. A bridge can
be hosted on a specially-deployed server, or it may be run on
a home computer by a Tor user who has opted to help cen-
sored users reach Tor. The standard Tor client may be easily
configured to operate as a bridge. Bridges can be strictly un-
listed (in which case information about the bridge is spread
by word of mouth), or their descriptors can be distributed
online by The Tor Project. As shown in Figure 1, the bridge
authority keeps track of valid bridges, and the BridgeDB [3]
provides the mechanisms for distributing bridge information
through the web and by e-mail. The mechanism for dis-
tributing bridge information to clients aims to make it easy
for any client to find a few bridges through the web or via
e-mail. At the same time it attempts to make it difficult for
someone to find many bridges in a short amount of time.
This is done by restricting the distribution of bridge de-
scriptors to one set per 24-bit IP address prefix in a week.
However, the distribution mechanism does not account for
attacks in which a user can gain control of many IP ad-
dresses through open proxies or botnets. Also, a relay op-
erator could discover many bridges by attempting a bridge
connection to any non-relay node that connects to it.

McLachlan and Hopper [20] have identified issues with
Tor bridges that could impact the anonymity of the bridge
operator. Specifically, these issues apply to bridge operators
who also use the bridge machine for web browsing. The
attack they described is possible because it is easy to find
a large number of Tor bridges, and a bridge always accepts
connections from potential bridge clients while its operator
is using Tor. They described the attack as three unique
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Figure 1: Basic interaction among bridge-related en-
tities.

phases, which we collectively refer to as the“bridge aliveness
attack”:

1. The bridge discovery phase involves collecting a
large list of bridge addresses and descriptors for use
later in the attack.

2. The winnowing phase narrows down the above list
of bridges that could have possibly contributed ma-
terial to a website with user-generated content under
a particular pseudonym by correlating timestamps of
pseudonymous posts with bridge“aliveness”monitored
through frequent polling of known bridges.

3. The confirmation phase is performed using a com-
bination of circuit clogging and timing attacks to con-
firm the suspected source of the pseudonymous contri-
bution on the website. To achieve this, the attacker
must be able to embed or control some content on this
page. The result is that the contributor’s IP address,
which he believed was hidden by Tor, is revealed to
the attacker.

Apart from compromising the bridge operator’s anonymity,
the capacity to discover a large number of live bridges also
makes it feasible to perform real-time blocking of many cur-
rently live bridges. This is an undesirable situation from
the standpoint of maintaining bridge availability. Further-
more, the attack also discourages users from running bridges
if there is a chance their anonymity can be compromised.

McLachlan and Hopper [20] suggested a few methods to
address different phases of this attack. To reduce the effec-
tiveness of the winnowing phase, one idea they proposed was
that a bridge could choose whether or not to serve clients
based on a biased coin toss when the operator starts using
Tor. This removes the close relationship between a bridge
operator actively serving and using Tor as a client. Unfor-
tunately, this results in fewer bridge resources available for
clients.

One suggested method for mitigating problems in the bridge
discovery phase is that a client should send a hash of the
bridge’s public key, discovered from the bridge authority,

which must be verified by the bridge before the connection is
accepted. This approach prevents an entry relay from easily
attempting to connect to all of its clients to test whether or
not they are serving as bridges. This change verifies that the
client received a bridge descriptor from the bridge author-
ity. The descriptor would still be valid indefinitely since the
hash does not change unless the bridge’s public key changes,
and hoarding would still be possible.

We also note that, because bridge users don’t use entry
guards, some Tor relays can infer that a connection is from
a bridge. That is, if a Tor relay is not an entry guard and
receives a connection from an IP address that is not listed as
a Tor relay, it may conclude that the IP address belongs to
a bridge. This issue has been previously discussed [11,12].

1.1 Our Contributions
We introduce BridgeSPA, a system that mitigates the

risks of serving as a bridge while using Tor by making it
more difficult to hoard bridge information and query bridge
aliveness. As users request bridge information from the
BridgeDB, BridgeSPA requires that an additional per-bridge
key is provided to them. This key is in addition to the bridge
IP, port, and fingerprint that are currently distributed. The
key will only be valid for a time period defined by the associ-
ated bridge. Clients using BridgeSPA must prove knowledge
of the appropriate key in order to access a bridge or to query
aliveness of the bridge. The key is used in an innocuous sin-
gle packet authorization (SPA) protocol [23, 25], which al-
lows the bridge to validate the key before responding. Failed
authorization attempts from a client do not reveal aliveness
and a passive observer of the communication is unable to
learn that the protocol is being used to connect to a bridge.
The innocuous SPA protocol used in BridgeSPA is based on
an existing system, SilentKnock [25], and has been modi-
fied for use with bridges so they would not need to maintain
explicit per-client counters.

A client who wishes to access a bridge using the Bridge-
SPA protocol runs the BridgeSPA KnockProxy alongside
the usual Tor client software. Similarly, bridges run the
BridgeSPA DoorKeeper to authorize valid client connec-
tions. These processes run alongside Tor, and do not require
changes to the Tor software.

In the next section we discuss related work. We formalize
our goals and adversarial model in section 3. In section 4 we
outline the details of the BridgeSPA protocol. We describe
our implementation and consider possible attacks on Bridge-
SPA in sections 5 and 6, respectively. Finally, we discuss
future work in section 7, and conclude in section 8.

2. RELATED WORK
The core strategies of BridgeSPA build on existing work

in port scan resistance and TCP/IP covert channels. An
attacker usually launches a port scan to gather information
about a target system such as the operating system and
specific services that are running. This helps an attacker
determine what vulnerabilities may be present in the target
system. A strategy used to limit a port scan’s effectiveness
is to drop all packets that do not arrive from a predefined
whitelist of IP addresses. However, bridges by definition re-
ceive connections from strangers, so the whitelisting strategy
cannot be applied in this scenario. The whitelist would also
require logging user IP addresses for clients connecting via



bridges, which is an undesirable requirement in anonymity-
preserving systems like Tor.

In 2002, Barham et al. [9] proposed designs for a silent
authentication service (SAS), which hides the existence of a
service to a requester until they send specially crafted pack-
ets with a secret key encoded in the TCP and IP headers.
While this does resist port scanning, the goal of this work
was to make DoS attacks less effective since unwanted pack-
ets may be quickly dropped by the SAS before being passed
onto an application. In 2003, Krzywinski [18] described port
knocking as a simple mitigation of port scanning. A port
knocking system will prevent access to a particular service
until the requester sends a series of packets to a pre-defined
sequence of ports. The port sequence is essentially a se-
cret key for accessing a particular service. Unlike SAS, port
knocking can be implemented in Linux with simple shell
scripts interacting with firewall rules. In 2006, Rash [23] de-
scribed single packet authorization (SPA) as a more elegant
solution to the same problem. An SPA system conceals the
existence of a particular service until the requester sends a
UDP packet to a particular host with an appropriate pay-
load. All of these systems successfully resist a port scan.
However, an adversary who is capable of passively moni-
toring communications could infer the existence of an SAS,
port knocking or SPA service in these scenarios by recognis-
ing communication patterns that are not characteristic of
normal TCP connections.

A number of researchers have studied the TCP/IP suite
for opportunities to implement covert channels [14, 21, 24].
In 1997, Rowland [24] described how the IP ID field in an IP
packet as well as the initial sequence number (ISN) in a TCP
packet can be used to encode information. This work was
later strengthened by Giffin et al. [14] to use the TCP times-
tamp field, and also to use message authentication codes
to encode the covert messages. Murdoch and Lewis [21]
later presented an analysis of how different versions of Linux
and OpenBSD select ISN and IP ID values. Since parts of
these values are not uniformly random, an appropriate dis-
tribution must be considered by covert messaging systems to
avoid leaking information. Related to TCP/IP covert chan-
nels, Goh et al. [15] describe an implementation of protocol-
based key recovery. They show how user-chosen random
fields in protocols such as TLS and SSH can be chosen by
one of the parties such that a passive adversary can discover
the secret key protecting the session.

In 2007, Vasserman et al. presented SilentKnock [25], a
form of SPA and SAS that takes into consideration the afore-
mentioned work on TCP/IP covert channels. They also
present a formal model against which we can evaluate in-
nocuous SPA systems. A client attempting to access a ser-
vice guarded by the SilentKnock daemon (sknockd) must
initiate a specially constructed TCP SYN packet to the tar-
get IP address and port. This packet contains a calculated
MAC encoded in the lower 3 bytes of the ISN value, and
the lower byte of the TCP timestamp field. In its simplest
version, the MAC is keyed with a pre-established long term
key and is applied to a per-client counter value, as well as
source and destination IP/port pairs. The per-client counter
needs to stay synchronized between SilentKnock clients and
sknockd. Upon receiving a TCP SYN packet, sknockd is
able to recompute the expected MAC value using its own
copy of the pre-established long term key and per-client
counter value. SilentKnock chooses to use the lower 3 bytes

of the ISN value and the lower byte of the TCP timestamp
field since these values are uniformly random in Linux 2.6.

BridgeSPA uses a form of SPA and SAS based on Silen-
tKnock. BridgeSPA also uses the lower 3 bytes of the ISN
value, and the lower byte of the TCP timestamp field. Bridge-
SPA does not try to maintain a counter for each client to
prevent replay, but instead includes loosely rounded UTC
time in the MAC pre-image. Bridge clients should not pos-
sess unique keys, and it is not appropriate to require Tor
bridges to maintain an access counter for each client IP ad-
dress. We describe our implementation with more detail
in section 5. For convenience, the structure of a TCP/IP
packet header as used in BridgeSPA is shown in Tables 1
and 2.

Specific to Tor, there have been investigations [16,22] into
including keys with bridge descriptors for the purpose of
making bridges more difficult to detect. Both of these works
propose that a client should send this secret to a bridge
after a standard TLS connection has been established. If the
secret is not sent to the bridge, or the secret is invalid, the
bridge will act like a regular web server. Note that this alone
does not protect against the bridge “aliveness” checks in the
winnowing phase, but we describe how this method may be
used to protect against hijacking attacks on the client side
in section 6.2.

Similar to the suggestions for Tor discussed above, there
has been a proposal to use port knocking and SPA for Tor
bridges to make them more resilient against detection [6].
This suggestion includes using DNS packets as a transport
method for SPA. While this idea would be much simpler to
implement, we feel it is necessary for the traffic that a bridge
client generates while using Tor to be completely innocuous.
A DNS request to a particular IP always being followed by
a TLS connection to that same IP may stand out to an
adversary who suspects that a client is using Tor bridges.

3. GOALS AND ADVERSARIAL MODEL
We have two major goals. As suggested above, our first

goal is to mitigate the bridge aliveness attack. Specifically,
we wish to remove the ability for an attacker to easily query a
bridge’s aliveness unless he has recently obtained the bridge’s
key. This will significantly increase the amount of network
resources an attacker must have to carry out the bridge
aliveness attack, since hoarded bridge information rapidly
becomes stale.

Our other major goal states that our changes and addi-
tions should not provide additional information to an ad-
versary who is attempting to detect clients who use bridges.
Currently Tor traffic is distinguishable from non-Tor traffic
and the Tor community is working to address this [8]. Our
work should not hinder their efforts in any way. A passive
man-in-the-middle observing a client connecting to a bridge
should not learn that a Tor connection is being established
simply because of the changes we propose.

Our secondary goals are as follows:

• Minimal communication overhead: Bandwidth is
frequently a limiting resource for Tor. It is therefore
important to minimize the communication overhead
our protocol imposes on bridge operators, clients and
authorities.

• Preserve the “unlisted bridge” mode: Currently,
bridges can operate without having their descriptors



Table 1: IP packet header. We use italics for values that can be used for covert channels, as described by
Murdoch et al. [21].

0 1 2 3

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Version IHL Type of Service Total Length

Identification (IP ID) Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

Table 2: TCP packet header. We use italics for values that can be used for covert channels, as described by
Murdoch et al. [21]. Values that are in bold are used by BridgeSPA.

0 1 2 3

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Source Port Destination Port

Sequence Number

Acknowledgement Number

Data Offset Reserved TCP Flags [CUAPRSF] Window Size

Checksum Urgent pointer

Options and Timestamp Padding

listed at a bridge authority. This provides the ability
for a bridge operator to manually distribute her bridge
information to specific users of her choice. This is a
useful ability that we must preserve.

• Maximize bridge uptime: To best utilize bridge
resources, we also want to avoid degrading service by
forcing a bridge to probabilistically stop serving clients
when it otherwise would be capable of doing so.

• Minimize assumptions about Tor protocols: Tor
is an actively evolving network. Our protocol should
be agnostic to the specifics of other Tor protocols.

3.1 Adversarial Model
As our two primary goals are addressing different types

of threats, the adversarial models we must consider are also
different. While addressing the bridge aliveness attack, we
consider a similar adversarial model to the one employed by
McLachlan and Hopper [20] when they presented the prob-
lem. Specifically, we consider a remote non-global adversary
who is capable of querying for a reasonably large number of
bridge descriptors from bridge authorities over time and may
perform aliveness tests by attempting to connect to bridges
as a bridge client. This adversary would also have access
to timestamps of contributions and control some content on
a website where the bridge operator makes pseudonymous
contributions.

When considering whether a bridge client may be iden-
tified as a Tor user, our adversary is much more capable.
We assume an active adversary with full control of the local
network in which the client is present. She is capable of mon-
itoring, injecting, replaying, shaping and dropping packets
but only within her network bounds. This adversary has no

Bridge Bridge Authority Client

SeedKey, 
update frequency

MACKey = 
MACSeedKey(epoch_index)

ConnectionTag = 
MACMACKey(curr_time 

+ header_data)

1

2

3

Figure 2: Changes to Tor bridge-related commu-
nication in BridgeSPA. 1. Upon registration with
the bridge authority, a bridge includes a SeedKey
and update frequency. 2. The bridge authority dis-
tributes bridge information along with the current
MACKey, derived from the SeedKey. This infor-
mation typically passes through the BridgeDB (not
shown). 3. A client uses the MACKey to create
a ConnectionTag, which must be included by the
client when connecting to this bridge.

view or control of the outside network, where Tor relays and
bridges operate.

4. BRIDGESPA PROTOCOL
In this section we describe the life cycle of bridges and

clients using the BridgeSPA protocol. BridgeSPA is an au-
thorization protocol that allows a client to connect to bridges
for which they have a valid descriptor but prevents the client
from hoarding bridge descriptors over long periods of time.
BridgeSPA accomplishes this while also not permitting bridge



aliveness checks from adversaries who do not possess valid
descriptors.

The BridgeSPA protocol utilizes a pre-shared key to gen-
erate message authentication codes (MACs) that are used to
determine the legitimacy of a bridge connection request. We
consider three main phases of a bridge’s life cycle that are
affected by BridgeSPA: bridge registration, bridge request
and client connection. An outline of changes made to the
bridge’s life cycle is illustrated in Figure 2.

Currently during bridge registration, a bridge that wishes
to be publicly listed communicates with the bridge authority
directly and provides a descriptor with information needed
for connecting to it. This includes the IP address, port, and
optionally, a fingerprint. In BridgeSPA, the SeedKey (a 256-
bit random value) and an associated update frequency are
also included. A reasonable value for an update frequency
would be between 1–7 days. The bridge and bridge authority
are each able to calculate the current epoch index from the
update frequency and the current time. An epoch index is
defined as the current Unix time divided by the update fre-
quency. Using the SeedKey and the current epoch index, a
bridge and the bridge authority may independently compute
short-lived MACKeys valid for any particular time period.
A MACKey is what a client, using the KnockProxy, uses
when he connects to a bridge to demonstrate that he has
recently obtained the bridge descriptor from an appropriate
source.

To initiate a connection, the client first generates a Con-
nectionTag which will be embedded in the first network
packet (the TCP SYN) that is sent to the bridge. The Con-
nectionTag is a MAC of the current time and header data
from the SYN packet, keyed with the MACKey. The time
used is represented as UTC, rounded down to the minute.
This is done to make replay attacks more difficult for an
active adversary. The header data includes the source and
destination IP address and port pairs, and the IP Identifi-
cation field. The ConnectionTag is used instead of sending
the MACKey directly to avoid replay attacks. A bridge, us-
ing the DoorKeeper, monitors incoming TCP connection re-
quests. When the DoorKeeper identifies an incoming bridge
connection request it is able to check the embedded Connec-
tionTag using its own copies of the MACKey, current time,
and header data. This is outlined in Figure 3. To gracefully
deal with edge cases, the DoorKeeper also calculates and
compares ConnectionTags of the previous and next minutes
before dropping a packet.

The client embeds a ConnectionTag using the TCP SYN
packet as a covert channel. As mentioned above, following
a strategy based on SilentKnock [25], to a passive observer
the request is indistinguishable from a connection request
not containing authorization information.

5. IMPLEMENTATION
We have developed a proof-of-concept implementation of

BridgeSPA to test our protocol.1 Our implementation re-
quires no changes to the Tor client or bridge software. To
support a deployed instance of BridgeSPA, however, the Tor
bridge authority and BridgeDB would need to be modified.
The implementation targets Linux, with kernel version 2.6.4
or later due to our reliance on the libnetfilter_queue li-

1Available at http://crysp.uwaterloo.ca/software/ under an
open-source licence.
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Figure 3: A client using BridgeSPA to connect to a
Tor bridge.

brary [2]. This library provides a user-space API for manip-
ulating network packets. Our implementations of both the
DoorKeeper and KnockProxy use libnetfilter_queue to
implement their respective parts of the BridgeSPA protocol.
On the client side we also developed a small tool to assist
with configuration. This tool will take a BridgeSPA bridge
descriptor, configure Tor to use the bridge, and pass along
the information to the running KnockProxy process.

When the KnockProxy receives bridge descriptors, it keeps
the MACKey for later use and adds an iptables rule to ensure
TCP packets intended for this destination will be available
through the libnetfilter_queue APIs. When the Knock-
Proxy encounters a TCP SYN packet intended for a Tor
bridge, it makes the necessary changes to the ISN and TCP
timestamp based on the calculated ConnectionTag. All sub-
sequent packets sent to and received from this bridge will
also be modified to have their sequence and acknowledge-
ment numbers adjusted appropriately.

The ConnectionTag is a SHA256-HMAC output, trun-
cated to 32 bits. This MAC is keyed with the MACKey
from the bridge descriptor, and applied to data found in
the TCP and IP headers, along with a rounded value of the
current time in UTC. It requires, however, that the client
and bridge are both loosely synchronized with an accurate
NTP server. As previously mentioned, the current time is
rounded to the nearest minute.

The DoorKeeper similarly instructs iptables to queue SYN
packets arriving at the pre-specified bridge port. As SYN
packets arrive, the ISN and timestamp are checked to de-
termine if they contain a valid ConnectionTag. The packet
is allowed to continue if this check succeeds. If the check
fails, the packet is rejected and will not be processed by the
operating system’s TCP stack.

The DoorKeeper implementation meets the goal of pre-
venting aliveness checks, since packets that are rejected will
not return any sort of response. This is outlined in Fig-
ure 4. When a connection is closed, the client associated
with that connection can no longer communicate with the
bridge without initiating another connection with a valid
ConnectionTag.

5.1 Unlisted Bridges
In section 4, we described how a client who received bridge

information from The Tor Project may connect to a bridge
using the BridgeSPA protocol. If an operator runs an un-
listed bridge, she must manually send some information to
her clients. We outline three possibilities for this type of sce-
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Figure 4: A failed authorization scenario with
BridgeSPA.

nario, two of which are compatible with our proof-of-concept
implementation.

First, the bridge operator can share a SeedKey and update
frequency with the client directly using an out-of-band chan-
nel. The client simply generates the current MACKey, and
then configures the KnockProxy following the same meth-
ods described above. Second, the bridge operator could
simply share the current MACKey, the same way The Tor
Project would distribute bridge information with the Bridge-
SPA protocol. Both of these are possible with our proof-of-
concept implementation. The latter requires that the opera-
tor continues to send updated MACKeys when the specified
epoch expires. Third, the bridge operator could offer a Seed-
Key or MACKey that is unique to each client’s IP address.
This is not currently implemented, and it may be less conve-
nient for clients who do not have static IP addresses. Note
that a future DoorKeeper design implementing this scenario
ideally should not have to store a list of Client IPs and their
respective keys; including the client IP in the computation
of the MACKey, for example, would suffice.

6. ATTACKS ON BRIDGESPA
In this section, we analyze BridgeSPA’s effectiveness by

discussing some attacks that are possible under the adver-
sarial model defined in section 3.1.

6.1 Bridge Aliveness Attacks
We can attempt to re-apply the bridge aliveness attack

from our introduction. In the bridge acquisition phase, an
attacker was able to rely on the fact that bridge information
could be collected over a large timespan and remain mostly
valid. This is no longer the case, since the MACKey for
each bridge will change between the epochs set by the up-
date frequency. As a result, for an attacker to obtain enough
bridges in a single time interval for the winnowing phase to
be effective, she must have access to a large number of IP
addresses in a short time. Furthermore, due to constraints
in the bridge information distribution protocol, these IP ad-
dresses must have distinct /24 network addresses. Thus, the
bridge aliveness attack is still possible but requires signifi-
cantly more resources. We consider this to be a substantial
improvement.

A determined adversary who thinks that a particular bridge
is concealed by BridgeSPA could try to determine aliveness
by guessing the correct ConnectionTag. As mentioned in
section 4, a DoorKeeper will accept three ConnectionTags
at any time. As a ConnectionTag is 32 bits long, this leaves
an attacker with an expected 231/3 guesses before finding a
valid ConnectionTag. It would be possible to blacklist an IP

after many incorrect guesses, but this may be better suited
as a firewall rule as opposed to an extension to BridgeSPA.

In section 7.4, we describe aliveness attacks on bridge ma-
chines that do not target the running bridge software.

6.2 Bridge Client Detection Attacks
We divide client attacks into those that a passive ad-

versary might perform, and those that an active adversary
would perform. In both of these cases the adversary is at-
tempting to determine whether a client is using a Tor bridge.

6.2.1 Passive Adversaries
By simply observing the BridgeSPA protocol, an adver-

sary can learn only that a client’s connection timed out or
that he established a TLS connection. This is the same as an
adversary observing a bridge client connection today. With
our current implementation, the adversary could also con-
clude that the ISN distribution is consistent with a Linux
2.6 system. Since our proof-of-concept implementation only
operates with Linux 2.6 clients this is not an issue. As sup-
port for more operating systems is added in the future, the
ISN distribution for a client using the KnockProxy should
continue to match the ISN distribution for connections that
do not.

Currently, there exists a race condition between TCP con-
nections created by BridgeSPA and other TCP connections.
Specifically, BridgeSPA currently does not observe other
outgoing TCP SYN packets to strictly ensure that the TCP
timestamp for its connections will be ordered correctly with
respect to others. If a passive adversary was sufficiently close
to the client and observed a TCP timestamp anomaly, they
may suspect that a BridgeSPA-like tool is being used.

As mentioned earlier, Tor traffic is distinguishable from,
for example, HTTPS. A passive adversary may still recog-
nize a flow of traffic as Tor-like traffic, but BridgeSPA does
not help with this detection.

6.2.2 Active Adversaries
We also consider what an active adversary is capable of,

especially if she suspects that a client may be connecting to
a Tor bridge.

As previously mentioned, bridge hoarding could still re-
veal a particular host as a Tor bridge. An adversary who
observes a client connect to a host that has been previously
listed as a bridge would certainly become suspicious. She
could not, however, easily confirm her suspicions by connect-
ing to the bridge unless she has a fresh bridge descriptor.

An adversary could attempt to use information from the
client to connect to the bridge herself. For example, the ad-
versary could replay a previously seen TCP SYN packet from
a client to a suspected bridge host. The adversary would
need to assume control of the client’s IP address, and replay
this before the timestamp embedded in the ConnectionTag
is stale. An even stronger attack is to hijack the TCP con-
nection as it is being synchronized. That is, after the bridge
client sends a TCP SYN packet with an embedded Con-
nectionTag, an active adversary could hijack the connection
and attempt to complete the Tor bridge connection. This
man-in-the-middle scenario is illustrated in Figure 5.

A way of addressing both of these attacks would be to
require that the client sends the entire non-truncated Con-
nectionTag after the TLS connection is established. Until
this is done, the bridge could simply act like some other



Bridge

Bridge Client KnockProxy DoorKeeper Bridge

Client

TCP SYN TCP SYN 
(ConnectionTag) ConnectionTag

validated

SYN

SYN ACK

ACKConnection 
timeout

Adversary

TCP SYN 
(ConnectionTag)

Figure 5: A BridgeSPA man-in-the-middle scenario.

Bridge

Bridge Client KnockProxy DoorKeeper Bridge

Client

TCP SYN TCP SYN 
(ConnectionTag) ConnectionTag

validated

SYN

SYN ACK

ACK

TLS Negotiation

ConnectionTag

Figure 6: BridgeSPA modified to prevent man-in-
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service that can run on top of TLS (e.g., IMAP). This is
similar to previous proposals [16,22], as discussed in section
2. This modification to BridgeSPA is illustrated in Figure 6.
We note however that currently the TLS certificates used by
Tor relays and bridges are distinguishable from other types
of TLS certificates. It is impossible for a bridge to convinc-
ingly masquerade as another service unless this is addressed.

An adversary who unsuccessfully replays a past Connec-
tionTag might infer that some type of innocuous SPA has
taken place. It would be difficult for the adversary, however,
to distinguish this scenario from a scenario where the target
host runs a dynamic firewall whose behaviour may change
based on rules unknown to her. Furthermore, an adversary
could try to monitor timing differences when a client con-
nects to a particular host versus the time to connect to hosts
in similar IP ranges. If an adversary notices a statistically
significant delay in responses when a client connects to a par-
ticular host, he may try to infer that the destination host is
running some form of SPA. Vasserman et al. [25] consider
the delay introduced by the SilentKnock daemon that runs
on the server (sknockd). From their measurements of the
user space version of sknockd, they consider an adversary

who is several hops away and has perfect knowledge of what
the expected non-SPA timing should be. They conclude the
adversary would need to observe hundreds of successful con-
nections before gaining an advantage in distinguishing be-
tween whether the destination host is running SilentKnock
or simply a dynamic firewall. We similarly measured the
timing of our proof-of-concept implementation of Bridge-
SPA. Table 3 shows the difference in timing of SYN and
SYNACK packets from a client connecting to a basic echo
server when the server is running behind the DoorKeeper
compared to when it is not. The client and server were
connected to the same network hub as the machine that
performed the network measurements. This configuration is
the best-case scenario for an adversary who is attempting to
detect the use of BridgeSPA. The measurements show that
the DoorKeeper introduces only a small amount of delay,
less than one hundred microseconds on average. If the ad-
versary is comparing observed BridgeSPA connection times
to the connection times of clients to similar hosts, we, like
SilentKnock [25], believe the timings would be inconclusive
in detecting the use of BridgeSPA unless the adversary is
sufficiently close to this network and has collected a large
amount of data. While we believe our implementation can
be further optimized, the improvements described in sec-
tion 7.2 will also add a small amount of overhead for the
DoorKeeper.

An adversary could also observe differences between con-
nection requests from a client to the bridge port on a par-
ticular host and other services that may be running on the
same machine. We discuss in section 7.4 why a bridge op-
erator who is relying on BridgeSPA to mitigate the bridge
aliveness attack should not have other publicly accessible
services running.

An adversary who suspects that clients are using Bridge-
SPA could also modify the sequence numbers on all pack-
ets in order to prevent SPA from succeeding for the clients
whom she suspects. She would also need to similarly change
the sequence acknowledgement field on packets inbound to
these clients in order to avoid violating the rules of the TCP



Table 3: A passive listener measuring the difference
in timing between 5000 sets of SYN and SYNACK
packets between two other hosts on the same phys-
ical network hub. We consider cases when one ma-
chine connects to an echo server running on the
other machine using the BridgeSPA KnockProxy
and DoorKeeper, and also with no BridgeSPA com-
ponents. The values below are averaged from the
5000 sets. The echo server machine was Thinkpad
X60 with a 1.6GHz Core 2 Duo processor and 4GB
of RAM.

SYN/SYNACK difference ± stddev
Without BridgeSPA 280 ± 20 µs
With BridgeSPA 370 ± 80 µs

protocol. We note however that changes to the sequence
number of packets always break some IP extensions, such as
IPSec [17]. Active modification of all packets at line speed
in a non-trivial manner seems to be beyond the capabilities
of most large active firewalls. For example, the Great Fire-
wall of China examines the contents of packets but does not
modify any packets in flight [10].

7. FUTURE WORK
Our current implementation is considered a proof-of-concept.

Here we identify parts of BridgeSPA that can be improved
in the future.

7.1 Compatibility, NAT
We have targeted Linux 2.6 due to the availability of its

source code and useful libraries. In the future we would
ideally target all platforms on which Tor clients and bridges
can operate. As an alternative design, we hope to explore
the idea of implementing the KnockProxy and DoorKeeper
in home routers that are capable of running user-specified
firmware. Projects such as Torouter [5] and FreedomBox [1]
suggest that this may be a feasible approach. Currently the
BridgeSPA protocol will not operate if the client is behind
NAT. Implementing KnockProxy and DoorKeeper in home
routers may also solve this issue.

7.2 Properly Handling SYN Retransmits
When a client, using the KnockProxy, sends a SYN packet

with a ConnectionTag embedded in the ISN and TCP times-
tamp, there is a chance this packet is lost and must be trans-
mitted. While a re-transmitted SYN will have the same ISN,
the TCP timestamp must be different. If the TCP times-
tamp has the same lower byte as the lost packet, this could
reveal information to an adversary who is attempting to de-
tect BridgeSPA usage. Vasserman et al. handle this with
SilentKnock [25] by applying a function based on shared
knowledge about the non-truncated MACKey to the middle
bytes of the timestamp to determine the last byte. Our im-
plementation does not currently handle this, but we believe
this behaviour could be properly handled without introduc-
ing much extra overhead to the DoorKeeper.

7.3 Bridge Authority and BridgeDB Changes
As mentioned in section 5, changes are required in the

bridge authority and BridgeDB code bases to support Bridge-
SPA. For example, currently a bridge authority will accept

bridge fingerprints and return the corresponding bridge de-
scriptors. This is contradictory to the introduction of a time-
limited MACKey. To introduce BridgeSPA, this particular
behaviour of bridge fingerprints would need to be changed.
We do not expect our changes to add significantly increased
complexity to these components.

7.4 Other Aliveness Checks and Recommen-
dations

BridgeSPA actively mitigates an adversary’s ability to
probe aliveness from a Tor bridge. Since the bridge aliveness
attack targets bridges on home computers, a Tor bridge may
not be the only software running that can demonstrate alive-
ness. For example, firewalls can be configured differently
with respect to external connection requests to closed local
ports. That is, firewalls may silently drop packets, which is
consistent with BridgeSPA’s behaviour when an SPA autho-
rization fails, or send a connection reset (“RST”) packet. A
bridge machine’s firewall should be configured such that it
cannot be easily prompted by an adversary to send a RST
packet and demonstrate aliveness. Any open port on the
machine could similarly provide aliveness information to an
adversary. Other publicly accessible services running on the
machine could be concealed by traditional SPA solutions.
Ideally, BridgeSPA would provide recommendations regard-
ing system configuration or other software that could be
probed for aliveness.

7.5 Pluggable Transports
There is a proposal for The Tor Project to support plug-

gable transports [7], which are custom SOCKS proxies de-
fined on a bridge-by-bridge basis to provide more opportu-
nities to conceal bridge traffic. For example, a bridge could
require that clients run a proxy that encapsulates regular
Tor TLS traffic in specific HTTP messages. This way bridge
traffic could be disguised to appear as if a client is simply
interacting with a web site. If a bridge requires a special
proxy, this information would be included in the distributed
bridge descriptor.

Not only is this goal complementary with BridgeSPA,
BridgeSPA could be implemented as a transport plugin.
This alternative design would facilitate configuration for clients.
Furthermore, the proposed changes to bridge descriptors to
support pluggable transports will support the distribution of
a BridgeSPA MACKey. BridgeSPA could chain with other
transport plugins, but only those that use TCP.

8. CONCLUSION
Previous work has explored vulnerabilities in the current

implementation of Tor bridges. The findings have indicated
that with a few trivial assumptions, an adversary can de-
anonymize a bridge operator’s pseudonymous online activ-
ities due to the fact that a bridge will always serve clients
while its operator is using Tor. The BridgeSPA protocol
addresses the issues of bridge descriptor hoarding and the
bridge aliveness attack while providing the bridge operator
with a stronger guarantee that the client received her de-
scriptor from a bridge authority. BridgeSPA is based on a
single packet authorization scheme that has been proven to
be undetectable by previous work. Our implementation is
available under an open-source licence.
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