
Proceedings on Privacy Enhancing Technologies ; 2018 (3):1–20

Cecylia Bocovich and Ian Goldberg

Secure asymmetry and deployability for decoy
routing systems
Abstract: Censorship circumvention is often character-
ized as a cat-and-mouse game between a nation-state
censor and the developers of censorship resistance sys-
tems. Decoy routing systems offer a solution to censor-
ship resistance that has the potential to tilt this race
in the favour of the censorship resistor by using real
connections to unblocked, overt sites to deliver censored
content to users. This is achieved by employing the help
of Internet Service Providers (ISPs) or Autonomous Sys-
tems (ASes) that own routers in the middle of the net-
work. However, the deployment of decoy routers has yet
to reach fruition. Obstacles to deployment such as the
heavy requirements on routers that deploy decoy router
relay stations, and the impact on the quality of ser-
vice for customers that pass through these routers have
deterred potential participants from deploying existing
systems. Furthermore, connections from clients to overt
sites often follow different paths in the upstream and
downstream direction, making some existing designs im-
practical. Although decoy routing systems that lessen
the burden on participating routers and accommodate
asymmetric flows have been proposed, these arguably
more deployable systems suffer from security vulnera-
bilities that put their users at risk of discovery or make
them prone to censorship or denial of service attacks.
In this paper, we propose a technique for supporting
route asymmetry in previously symmetric decoy rout-
ing systems. The resulting asymmetric solution is more
secure than previous asymmetric proposals and provides
an option for tiered deployment, allowing more cautious
ASes to deploy a lightweight, non-blocking relay station
that aids in defending against routing-capable adver-
saries. We also provide an experimental evaluation of
relay station performance on off-the-shelf hardware and
additional security improvements to recently proposed
systems.

Keywords: keywords, keywords

DOI Editor to enter DOI
Received ..; revised ..; accepted ...

Cecylia Bocovich: Cheriton School of Computer Science,
University of Waterloo, cbocovic@uwaterloo.ca

1 Introduction
In recent years, Internet censorship has become an in-
creasing world-wide concern. A 2016 Freedom House re-
port declared that Internet freedom has now been in
a steady decline for six consecutive years [25]. They
reported that in 2016, roughly two-thirds of Internet
users dealt with government censorship. This censorship
aims to cut off access from websites that support polit-
ical opposition, marginalized communities, and images
that criticize or satirize those in power. Furthermore,
journalists and users of social media that disseminate,
or merely read, content that a censoring nation deems
contrary have faced personal dangers such as arrest or
increased scrutiny. This makes hiding the use of censor-
ship resistance systems paramount in developing new
circumvention technologies.

Tools for censorship circumvention range from sim-
ple proxies that hide the IP addresses of visited sites,
to systems that disguise traffic patterns by padding
packets or mimicking allowed protocols. These systems
have evolved as a result of a cat-and-mouse game be-
tween nation-state censors and censorship resistors [34].
As new techniques for evading censorship arise, censors
tweak their filtering systems to identify the weaknesses
in existing tools that signal their usage. This makes hid-
ing the fact that the user is using a specific tool (given
that the censor knows the tool exists and the details of
the system) critical to both the user’s safety and the
success of the censorship resistance system.

Decoy routing (also known as end-to-middle (E2M)
proxying) [4, 11, 18, 24, 31, 39, 40] is a technique for cen-
sorship resistance that has the potential to skew the cat-
and-mouse game in the favour of the censorship resistor.
The key way decoy routing hides its usage is by appro-
priation of real, uncensored (“overt”) traffic to provide
access to covert information instead of mimicking al-
lowed traffic. Mimicry is a common technique employed
by censorship circumvention systems [6, 9, 28, 36, 38],

Ian Goldberg: Cheriton School of Computer Science, Univer-
sity of Waterloo, iang@cs.uwaterloo.ca

Secure asymmetry and deployability for decoy routing systems 2

but by its nature deviates from real traffic in ways that a
sufficiently advanced censor could detect [17]. Although
such techniques have yet to be documented for use by
nation-states in an effort to detect the usage of cen-
sorship resistance systems, they still pose a threat to
individual users who may, now or in the future, face
dire consequences for defying their jurisdiction’s strict
controls on Internet usage.

Although decoy routing provides strong security
properties against both active and passive attacks, there
are numerous obstacles to deployment. The deployment
of a decoy routing system relies on the participation
of autonomous systems (ASes) that own routers in the
middle of the network. Previous work on the optimal
placement of decoy routers aims to maximize the num-
ber of unblocked, overt sites available and minimize the
required amount of deployed stations [5, 20, 30]. How-
ever, researchers have yet to convince large ASes to de-
ploy decoy routing in a production setting. While recent
work on analyzing a small-scale decoy routing deploy-
ment [13] provides hope that ISPs are willing to deploy
lightweight decoy routers, we are still a long way from
convincing the majority of ASes to adopt these systems
for Internet freedom purposes. Concerns such as the
hardware required to block, modify, or drop traffic at
the router, the effect checking for steganographic tags
would have on regular traffic, and the logistics involved
in setting up and maintaining a relay station remain
deterrents for both large and small ASes.

Furthermore, connections to overt sites are often
asymmetric. While they may cross a router with a de-
ployed decoy routing relay station on the path to an
overt site, the path taken back from the overt site to
the user may not cross the same router. This makes the
deployment of decoy routing systems more difficult, per-
haps necessitating a larger number of participant ASes.
While some asymmetric solutions exist [11, 18, 39], they
suffer from security vulnerabilities that could put users
already under the scrutiny of a nation-state censor at
risk. Waterfall, a recently proposed asymmetric decoy
routing system, requires a relay station only on the
downstream half of a flow [31]. This provides resis-
tance against routing around decoys (RAD) attacks [32].
Furthermore, Waterfall provides significant security im-
provements to existing asymmetric designs by employ-
ing and improving upon the techniques used in Slith-
een [4] to securely relay covert information in an un-
detectable and high-bandwidth manner. However, the
registration protocol is prone to denial of service attacks
and blocking.

In this paper, we address the main challenges to
deployability that current decoy routing systems face.
We provide an experimental analysis of affordable, off-
the-shelf hardware that can be used by ASes in the de-
ployment of decoy routing relay stations. To address
the problem of route asymmetry, we leverage the fact
that routes between specific clients and overt sites are
very stable, meaning they pass through the same set of
ASes in subsequent flows. We propose a “gossip” pro-
tocol that may be applied to all previously symmetric
systems to make them work in an asymmetric setting.
In keeping with the ideas presented in Waterfall, our
approach emphasizes downstream traffic. We use ex-
tremely light-weight upstream stations (simple taps) to
relay information to stations on the downstream half
of the flow that incur a bandwidth overhead of only
1.0055× the total bandwidth through upstream station.
Our design provides a more secure alternative to Water-
fall’s registration protocol and requires fewer deployed
heavy-weight relay stations that perform in-line blocking
and intense computations than symmetric systems. We
require as few as five heavy-weight stations for a highly
connected, routing capable adversary such as China, as
opposed to the hundreds of stations required by sym-
metric designs. Our contributions are as follows:
– We propose a new solution for routing asymmetry

that is applicable to all previously symmetric sys-
tems and evaluate the overhead cost of deployment
as well as its resistance to RAD attacks.

– We provide measurements on the impact relay
station deployment would have on regular traffic
through a participant ISP. We hope our results will
convince an AS interested in deploying a relay sta-
tion that their quality of service will not be largely
affected by even the most complex of the recently
proposed decoy routing systems.

– We present a possible vulnerability in decoy rout-
ing systems that modify and re-encrypt TLS ap-
plication data and propose a solution that defends
against an adversary capable of seeing traffic on
both sides of the relay station. This adversary falls
outside the decoy routing threat model for the cen-
sor, but a non-censoring adversary could exploit the
vulnerability to decrypt or modify covert traffic.

In the next section, we discuss existing work in censor-
ship circumvention. In Section 3 we propose our solution
for handling asymmetric routes, followed by experimen-
tal results on relay station efficiency in Section 4 and a
security analysis in Section 5. We end with a conclusion

Secure asymmetry and deployability for decoy routing systems 3

and a discussion of future steps towards deployment in
Section 6.

2 Censorship Circumvention
Nation-state censors filter Internet traffic before it leaves
their area of influence. Past studies on Internet filtering
have revealed a variety of techniques such as blocking
access to specific IP addresses [2, 29], filtering DNS re-
quests by the URL or keyword [29], or performing more
sophisticated deep-packet inspection techniques to de-
termine the usage of censorship resistance tools [34, 37].
Many Internet filtering techniques employed by censors
have evolved in response to the development of the cen-
sorship circumvention systems. A notable example of
this phenomenon is the interaction between Internet fil-
tering in China and advances in the censorship resis-
tance aspects of Tor [8].

Originally developed to provide anonymity for web
browsing, Tor has been adopted by many for its useful-
ness in circumventing government censorship. By dis-
guising which website a user is browsing, Tor prevents a
censor from learning whether or not a user is accessing
a blocked website. As such, many countries that censor
web traffic began to block all access to Tor. Tschantz
et al. [34] document the interplay between Tor and
China’s Great Firewall (GFW) with extensive empir-
ical evidence taken from bug reports, correspondence
with The Tor Project, and changes in the Tor protocol.
In response to the blocking of publicly listed Tor relays,
unlisted Tor relays called bridges began to be circulated
privately, enabling their use for a short period of time
before their discovery by censors [7]. When bridges are
discovered by censors and subsequently blocked, new
bridges are cycled into use. The GFW responded to
the introduction of bridges by using more sophisticated
deep-packet inspection techniques and exploiting unique
patterns in the Tor protocol to differentiate Tor traffic
from regular web browsing. This led to the development
of pluggable transports [6, 9, 12, 28, 36, 38], designed
to encapsulate and disguise the defining characteristics
of Tor traffic.

The majority of pluggable transports take one of
three different approaches to disguising Tor traffic: ob-
fuscation, mimicry, or appropriation. The first approach
aims to mask the defining characteristics of Tor traf-
fic by making the connection look as random as possi-
ble [6, 38]. The success of this technique is grounded in
the assumption that censors are unwilling to block traf-
fic that they are unable to definitively classify as censor-

ship resistance or contrary to their governance, as that
would possibly lead to an increase in public unrest [10].
However, past precedent indicates that in critical times
censors may be willing to take the risk; Aryan et al.
recorded the blocking of undefined Internet protocols
by the government of Iran during the 2013 presidential
elections [2].

Mimicry aims to make connections indistinguish-
able from popular unblocked content or services, forcing
censors to make a difficult decision: to either continue to
expand their list of blocked sites to include popular ser-
vices (thereby risking public unrest), or surrender their
position. Many pluggable transports shape traffic or en-
capsulate it in messages that closely resemble protocols
such as HTTP [9], Skype [28], or HTML [36]. The ulti-
matum presented to the censor rests entirely on the abil-
ity of these systems to mimic allowed sites and services
more closely than the censor’s ability to exploit minor
differences. Houmansadr et al. [17] argue that the main-
tenance of near-perfect mimicry is extremely difficult;
as advances in computing allow censors to classify large
amounts of traffic more accurately, censorship resistors
will see themselves on the losing side of this reactive
battle.

While the cycling of bridges and use of pluggable
transports has proven effective in many regions for pro-
viding access to Tor, there is a danger that after their
discovery, censoring nations will start to punish users
that have connected to IP addresses revealed to be entry
points to the Tor network. Meek is a pluggable trans-
port that appropriates connections to allowed sites and
services. It disguises the IP address of bridges by hid-
ing them behind popular services such as Google, Ama-
zon Web Services, or Microsoft Azure using a technique
called domain fronting [12]. A user makes a real con-
nection to one of these large domains and accesses a
proxy running inside their systems. Not only does this
protect the user by making it impossible for a censor to
link them to a specific IP address used to access Tor,
it also leverages a powerful incentive for governments
that do not control equivalent services not to block ac-
cess to these powerful sites. For nations that do posses
equivalence, the efficacy of this method diminishes.

Other circumvention systems appropriate allowed
protocols and tunnel censorship resistance traffic
through them [3, 19, 21, 27]. By using existing im-
plementations of protocols such as Voice-over-IP, video
streaming services, or email as a covert channel, these
systems are not discernible by a censor due to differences
in implementation as are systems that use mimicry.
However, Geddes et al. [14] show that differences in the

Secure asymmetry and deployability for decoy routing systems 4

Fig. 1. An overview of a generic decoy routing system. A decoy
routing session has two phases: the tagging phase, and the proxy
phase. In the tagging phase, the client embeds a tag in a seem-
ingly random channel (such as the ClientHello random nonce in a
TLS handshake or the ciphertext of the TLS application data) to
an overt, unblocked site. The relay station recognizes the tag and
extracts from it the information necessary to compute the TLS
master secret. In the proxy phase, the relay station decrypts TLS
application data to receive upstream covert traffic from the client.
It initiates a connection to the covert site and begins to proxy
covert data between the client and the covert site. From the cen-
sor’s point of view, the client is making a normal connection to,
and receiving content from, the overt site.

typical traffic transported by the cover protocol and the
tunnelled censorship resistance traffic can produce iden-
tifying characteristics that would allow a censor to block
or identify their use.

2.1 Decoy routing

Decoy routing was originally proposed by three indepen-
dent research groups in 2011 as a means to move censor-
ship resistance systems from easily blocked endpoints
to the middle of the network [18, 24, 40]. These orig-
inal first-generation systems were followed by several
second-generation systems, characterized by their main
goal of improving the deployability and security of their
predecessors [4, 11, 39]. Waterfall is a third-generation
system, developed in response to a trade-off between
asymmetry and security present in the second genera-
tion of proposals, that provides strong defenses against
known attacks and addresses practical concerns sur-
rounding the deployment of decoy routing systems [31].
The motivation of decoy routing was to level the play-
ing field by fighting powerful nation-state censors with
powerful nation-state defenses. The technique requires
the cooperation and active participation of Internet Ser-
vice Providers (ISPs) and Autonomous Systems (ASes)
that own routers outside of regions that censor Inter-
net traffic. Non-censoring jurisdictions would place de-
coy routers, or relay stations, at strategic points on the
path between users in censoring regions and popular,
unblocked sites. Users suffering from censorship could

then make a connection to these unblocked overt sites
and send a steganographic tag, recognizable by the de-
ployed relay stations—and only by them—as a request
to access censored content, appropriating the connec-
tion. From the censor’s point of view, this tag and other
features of the user’s connection are identical to any
other access to the overt site. We give an overview of a
generic decoy routing system architecture in Figure 1.

The details of the steganographic tagging procedure
vary across decoy routing systems. Telex [40], Curve-
ball [24], Rebound [11], and Slitheen [4] place a tag
in the random nonce of the ClientHello message in the
TLS handshake with the overt site. This tag is recogniz-
able only by a targeted deployed relay station and gives
the relay station the information necessary to compute
the TLS master secret for the session and man-in-the-
middle the connection between the user and the overt
site. Cirripede [18] and Waterfall [31] have registration
protocols that are distinct from the connections that
deliver covert content. TapDance [39] and Rebound use
steganographic encodings to make their tagging proto-
col work for asymmetrically routed flows.

After the tagging/registration phase is complete,
the decoy routing system begins to relay covert infor-
mation to the client in the proxy phase of the decoy
session. The details of this process also vary, and this
phase is the aspect of decoy routing subject to the iden-
tifying characteristics of appropriation. It is at this point
that the relay stations for most decoy routing systems
abandon or sever the connection to the overt site. While
the registration phase of early systems is provably in-
distinguishable from regular, non-decoy, connections to
the overt site, traffic in the proxy phase takes the shape
and characteristics of the covert site [11, 18, 24, 39, 40].
This makes these systems vulnerable to website finger-
printing [16, 35] or latency analysis attacks [32].

Slitheen and Waterfall address the weaknesses in
the appropriation of the TLS connection to an overt site
during the proxy phase by not severing or abandoning
the connection to the overt site. They maintain the con-
nection to the overt site, and send valid HTTP requests
for real overt resources. The client loads overt websites
in the exact manner that a regular user would, parsing
HTTP responses and loading additional content with
the help of an actual web browser, termed an overt user
simulator (OUS). In Slitheen, covert content is deliv-
ered to the user by the relay station in the place of “leaf
resources”, or resources such as images or videos that
would not prompt a browser to make additional con-
nections for more resources. In Waterfall, all previously

Secure asymmetry and deployability for decoy routing systems 5

Table 1. A comparison of the deployability features and security properties of existing systems. We indicate that a system has the
property or feature listed on the left of the table with a filled circle . Systems that lack a feature or property are marked with an
empty circle #. Our proposed design to support asymmetric routes enables the deployment of lightweight upstream stations with no
in-line blocking in addition to the original heavyweight downstream stations. (We denote the requirement for in-line blocking in only
the downstream stations with the half-filled circle G#.) This improvement to deployability provides the potential to thwart RAD attacks.

Tel
ex [

40]

Tel
ex +

this
wor

k

Cirr
iped

e [1
8]

Cur
veb

all
[24

]

Cur
veb

all+
this

wor
k

Tap
Dan

ce [
39]

Reb
oun

d [1
1]

Slit
hee

n [4
]

Slit
hee

n +
this

wor
k

Wate
rfal

l [3
1]

Wate
rfal

l +
this

wor
k

No in-line blocking # G# # # G# # # G# G# G#
Asymmetric # # #
Defends against TCP replay attacks #
Defends against latency analysis # # # # # #
Defends against website fingerprinting # # # # # # #
RAD-resistant # # # # #
DoS-resistant registration #

cached resources are replaced to increase the amount of
covert bandwidth available to the user.

In both systems, resources are replaced on a per-
packet basis as they pass through the relay station, mak-
ing decoy routing traffic identical to a regular access
of the overt site. The pattern of connections to overt
servers, packet sizes, and page load times are indistin-
guishable from a non-decoy session, removing the dis-
tinguishing characteristics that arise from appropriating
the connection to the overt site. The task of the censor
now falls on determining whether the access pattern of
the overt sites themselves is done by a user simulator or
a regular user, a problem that is more likely to be error-
prone for a censor than existing website fingerprinting
techniques.

2.2 Known challenges to deployment

Recently, a number of research groups have proposed so-
lutions to the decoy router placement problem (DRP)
that aim to maximize the coverage of overt sites avail-
able through decoy routing stations and minimize the
number of decoy routers needed to successfully inhibit a
censor’s ability to evade decoy routers and block overt
sites [5, 20, 30]. Sufficiently powerful censors can per-
form Routing Around Decoys (RAD) attacks by manip-
ulating BGP and routing tables to send traffic to overt
sites down paths that do not contain a deployed relay
station [31, 32]. With enough deployed stations, these
attacks become extremely difficult and expensive [20].
However, we have yet to see deployment on large ASes,
let alone the widespread placement of relay stations in
the middle of the network.

Wustrow et al. [39] were the first to closely examine
deployment challenges, and developed TapDance as the
result of discussions with ISPs about their reluctance
to deploy existing systems. The resource requirements
of relay stations and route asymmetry were cited as the
most onerous to ISPs and practical usage of existing sys-
tems. Telex and Curveball both require the relay station
to perform in-line flow blocking, severing the connection
between the user and the overt site after the TLS hand-
shake. This not only requires sophisticated and poten-
tially expensive hardware, it also violates the terms of
service many ISPs have with overt sites. Because Tap-
Dance does not perform in-line flow blocking, it does not
have an impact on the quality of service of HTTPS traf-
fic through the router of a deployed relay station. This
has made the trial deployment of TapDance successful,
at both a regional ISP and university network [13]. Dur-
ing the trial, the deployed TapDance stations were able
to serve up to 3,000 clients while processing 40Gb/s of
regular ISP traffic. However, the deployability of Tap-
Dance is offset by security vulnerabilities that may lead
to easy blocking by a nation-state censor, as we discuss
in the next section.

To our knowledge, there have yet to be experiments
on the resources needed by a relay station that per-
forms in-line blocking to check steganographic tags and
the impact these operations would have on the quality
of service for all overt sites accessible through the de-
ployed relay station. Tags need to be checked for every
TLS connection, which now comprise over a third of all
Internet traffic [1] and require the relay station to per-
form expensive public key operations. In Section 4, we
provide an extensive analysis of the impact of checking
Telex tags using specialized hardware. We chose Telex

Secure asymmetry and deployability for decoy routing systems 6

tags as they are used by multiple systems, including
Telex, Slitheen, and Rebound.

Another obstacle in the deployment of decoy rout-
ing systems is the prevalence of asymmetric flows. The
upstream path from a user to an overt site may pass
through a relay station, but the downstream path may
take a different route and miss the relay station targeted
by the user’s tag. Of the seven existing decoy routing
systems, only Cirripede, TapDance, Rebound, and Wa-
terfall support asymmetric flows. With these systems,
as long as the user’s traffic passes through a relay sta-
tion on the upstream (or downstream, in the case of
Waterfall) path to the overt site, the relay station can
effectively deliver covert content to the user. However,
as we discuss in Section 3, second-generation asymmet-
ric solutions have significant flaws that could allow a
passive censor to identify their usage. While Waterfall
has strong security properties, the registration protocol
is prone to denial of service and blockage by a censor.
Our solution presents an alternative to client registra-
tion as well as a solution to the relaying of upstream
covert data from the client to the relay station that
places less strain on overt sites.

For Telex, Curveball, and Slitheen, the relay station
has to see both upstream and downstream traffic of a
tagged session. Our solution can be applied to all pre-
viously symmetric systems to recognize and use asym-
metric flows for the delivery of covert content. We use a
gossip protocol for deployed relay stations to share infor-
mation about potential steganographic tags. We provide
an overview of the deployability features and security
properties of existing systems in Table 1. The previ-
ously symmetric systems Telex, Curveball, and Slitheen
are analyzed both in their original form and along with
our improvements to support routing asymmetry.

3 Routing Asymmetry
Traffic between a client and an overt site often takes
a different route, passing through different routers or
ASes, in the upstream and downstream directions. Past
studies have found somewhere between 80% and 90% of
routes to be asymmetric [15, 22, 33]. This asymmetry
becomes more prevalent in the centre of the network.
John et al. [22] found that only about 10% of flows are
symmetric in Tier-1 networks (i.e., the backbone of the
Internet), while flows at the edge of the network are
symmetric about 70% of the time. The ability of a decoy
routing system to work in the presence of asymmetric
flows enhances the system’s deployability by increasing

the effectiveness of deployed stations and lowering the
number of relay stations that must be deployed to de-
fend against routing-capable adversaries. Each individ-
ual relay station can intercept traffic meant for a larger
number of overt sites. Four of the existing decoy routing
systems accomodate routing asymmetry. Cirripede [18],
TapDance [39], and Rebound [11] function properly if
a user’s traffic passes through a deployed relay station
only in the upstream direction towards the overt site,
but each has security issues or drawbacks, which we
outline next. Waterfall [31] takes a different approach,
placing relay stations only on the downstream path from
the overt site to the user.

Cirripede accomplishes routing asymmetry by han-
dling client registration (i.e., recognizing that a client
wishes to begin a decoy routing session) solely through
the passive observation of TCP SYN packets. These
packets are sent from the client to the overt site at the
start of every connection. After recording the ISNs from
12 of the client’s TCP connections, they make a rule in
their routing table to divert all traffic from the client’s
IP address to a service proxy for a fixed period of time.
During this time, as long as the client’s traffic passes
through this router in the upstream direction towards
any overt site, it will be redirected to a service proxy
that will relay data to and from the client and a covert
site. Downstream data from the covert site is sent di-
rectly from the service proxy to the client, eliminating
any need for a relay station to be placed downstream.

On the usability side, a disadvantage of this ap-
proach is that all of a client’s traffic will be redirected
to the service proxy during the fixed time set by the re-
lay station. If a client wishes to browse a site normally,
they must wait for the duration of the decoy routing
session to end. There is also a security vulnerability due
to the fact that traffic between the user and the covert
site does not follow the same downstream path it nor-
mally would in a connection to the overt site during
the proxy phase. If the overt site and the covert site
are significantly far apart, a censor could easily notice
a significant difference in latency or in where the traffic
enters their network to identify decoy routing sessions.

TapDance implements asymmetry by waiting for
the client and overt site to complete the TLS hand-
shake before initiating the tagging procedure. The first
upstream HTTP GET request from the client contains
a tag in the ciphertext that gives the relay station the
client’s public key and the encrypted TLS master secret
for the session. After retrieving the TLS master secret,
the relay station can decrypt upstream data from the
client and establish a connection to the covert site. It

Secure asymmetry and deployability for decoy routing systems 7

then sends covert data to the client directly, encrypting
it with the TLS master secret and assuming the role
of the overt server. Unfortunately, the non-blocking na-
ture of TapDance and its inability to block or modify
downstream traffic leaves the system vulnerable to ac-
tive attacks by an adversarial censor. Because the relay
station is sending traffic to the client on behalf of the
overt site, the TCP sequence numbers for downstream
data will differ from the overt site’s TCP state. A cen-
sor can then replay a stale TCP packet to the overt site,
prompting an acknowledgement that reveals the server’s
true state, inconsistent with what the censor has wit-
nessed. TapDance also suffers from the same passive at-
tack as Cirripede, that stems from the difference in the
locations of the relay station and the overt site.

Rebound’s asymmetric solution presents a different
problem by making traffic vulnerable to attack from a
passive adversary. Rebound’s upstream-only relays re-
ceive necessary handshake information from the client
in an encoding method similar to TapDance. After re-
constructing the TLS master secret, the relay delivers
covert content to the user by encrypting it and send-
ing it as an invalid resource name to the overt server in
an HTTP GET request. To maintain a consistent TCP
state between the overt server and what a passive censor
sees, a client must send a GET request with a length
that matches the length of the downstream data she
wishes to receive. This results in a nearly equal amount
of upstream traffic and downstream traffic, which is a
highly atypical traffic pattern for any type of web brows-
ing activity. Furthermore, the ethical implications of
sending several bad requests to overt sites makes this
technique undesirable.

Waterfall places relay stations on the downstream
path between the user and overt site, a technique that
allows for much stronger security properties in the proxy
phase of the decoy routing session as well as a defense
against RAD attacks. The downstream-only asymmetry
of Waterfall is made possible by the separate registra-
tion protocol between the client and the registration
server. The client sends a registration package with a
series of identifiers: one for each future decoy routing
session the client wishes to establish. The identifiers con-
tain all necessary upstream information a relay station
would need to man-in-the-middle the TLS session with
the overt site. The registration server disseminates this
information to relay stations, which then attempt to
decrypt TLS sessions whose client IP address are in-
cluded in the list of registered clients, using the connec-
tion identifier information provided. This registration
process provides a usability advantage over Cirripede:

clients can choose which of their subsequent flows are to
be decoy sessions and which are regular browsing ses-
sions. However, an attacker could perform a denial of
service attack against suspected clients by registering a
series of identifiers in their name. It is unclear how such
conflicts in registration would be solved. Furthermore,
the connection between the client and the registration
server could be censored, requiring the client to adopt a
different censorship circumvention system to make this
initial connection.

The proxying of covert information to the user in
Waterfall is very similar to Slitheen: overt resources are
replaced in a manner that perfectly imitates the load-
ing of an overt site. However, upstream information is
bounced off of the overt site to the downstream sta-
tion in a manner similar to Rebound. They suggest sev-
eral methods for bouncing covert data off of the overt
server, including HTTP 404 messages and HTTP redi-
rects, the latter of which are quite common in normal
web-browsing behaviour.

In this section, we describe a solution to achieve
asymmetry in previously symmetric decoy routing sys-
tems such as Telex, Curveball, or Slitheen, that main-
tain the security properties of these systems. Our solu-
tion can also be used as an alternative to the registration
protocol of Waterfall and as an alternate way to relay
upstream information to the downstream relay station,
and maintains the same RAD-resistance as Waterfall
due to the focus on the downstream half of the flow.

We position easily deployable, non-blocking relay
stations (which are really just simple taps) in the up-
stream half of a connection from a user to an overt site
to gossip ClientHello random nonces to possible down-
stream relay stations that may be able to recognize a
tag. As this random nonce is the only upstream part of
the TLS handshake a relay station needs to compute the
TLS master secret, the downstream station only needs
this small amount of gossipped information—and not
necessarily in real time—to successfully use that and
subsequent flows for decoy routing. During the proxy
phase of the decoy routing session, these gossip stations
also relay upstream information to nearby downstream
stations.

3.1 Asymmetric Gossip Protocol

Our solution for asymmetric decoy routing takes a
slightly different approach from existing solutions. We
require the existence of a relay station in both the up-
stream half of the flow (on the path from the client to

Secure asymmetry and deployability for decoy routing systems 8

Fig. 2. Modified TLS handshake for tagged flows. We de-
fine the context string χ as server_ip‖ρ, where ρ =
ClientHello random[0..3]. For a full comparison of the original
TLSv1.2 protocol to these modifications, see Appendix A.

the overt site), and the downstream half (on the path
from the overt site to the client). These relay stations
do not need to be placed on the same router, or even
in the same AS. The relay station in the upstream path
requires only an extremely lightweight non-blocking net-
work tap and aids in both registration and the proxying
of upstream information. This tap removes Waterfall’s
need for a client to connect to a registration server, pro-
vides a DoS-resistant way to tag decoy sessions, and
reduces the load on the overt site by directly sending
upstream covert data to the downstream station.

Our focus on the downstream relay station comes
from the fact that a relay station only needs to observe
one upstream handshake message to compute the TLS
master secret: the ClientHello message that contains the
steganographic tag in its random nonce. However, the
relay station needs to see multiple downstream hand-
shake messages: the ServerHello, ServerKeyExchange,
and (in the case of Slitheen), the downstream Finished
message. To minimize the communication between two
relay stations on either side of the flow, the upstream
relay station “gossips” received ClientHello messages to
other known relay stations, in an attempt to reach a
relay station on the downstream path.

This approach spans multiple flows between a client
and an overt site and therefore requires route stability,
in which although each flow is routed asymmetrically,
the routers traversed in each direction do not vary sig-
nificantly between the same two endpoints. There is ev-
idence that routes are highly stable; a 2009 study by
Schwartz et al. [33] compared the routes taken between
between over 10,000 sets of endpoints with an average
of about 100 measurements for each pair over the course
of four days. Analysis over this time frame is more than

sufficient for the purposes of our system. They found
that most pairs of endpoints had a dominant route, or
one in which over half of the traffic between these pairs
traversed. 25% of pairs had absolute stability where all
traffic (although possibly asymmetric) always crossed
the same routers. Furthermore, the number of distinct
routes for endpoints that did experience variance was
usually small: only about 20% of all endpoint pairs had
over 20 distinct routes, and very few had over 60. This
leads us to believe that there is a high probability that
subsequent flows between the same client and overt site
will cross the same downstream relay station, particu-
larly in the short term due to load-balancing practices.

We first describe the tagging phase of our asymmet-
ric solution using the modified TLS handshake used by
Slitheen for tagging flows. We follow this with a discus-
sion of asymmetry in the relay, or proxying, phase of
the decoy routing session.

3.1.1 Asymmetric Tagging

We use the Slitheen tagging protocol as it is a slightly
modified, updated version of Telex’s tagging procedure,
differing only in the handling of TLS Finished messages,
as shown in Figure 2. This method varies only slightly
from that used by Curveball, in which the client and
the relay station share a symmetric secret that was ex-
changed out of band.

In Slitheen, a steganographic tag is placed in the
last 28 bytes of the 32-byte random nonce of the TLS
ClientHello handshake message. The first 4 bytes are re-
served and usually randomly generated; however, some
older implementations of TLS used them as a times-
tamp. Our solution uses an implementation that ran-
domly computes these bytes, and we will refer to this
random value as ρ = ClientHello random[0..3] for ease
of reference in the rest of the paper.

To enable the downstream relay station to compute
the TLS master secret from the previous ClientHello
random nonce and the server’s TLS handshake mes-
sages, we make one further small modification to the
tag. In Telex and Slitheen, the tag and the client’s TLS
key exchange parameters are computed from the client-
relay shared secret as well as a context string χ, where
χ = server_ip‖ρ‖TLS_session_id. In our asymmetric
setup, the downstream relay station is responsible for
intercepting the flow and may not have access to the
TLS session id (as this may or may not be reflected
in the ServerHello message, depending on the session’s
resumption status). Therefore, we use a different con-

Secure asymmetry and deployability for decoy routing systems 9

Fig. 3. Gossip protocol for symmetric flow tagging. The user tags a connection to the overt site for a relay station positioned in the
downstream half of the flow. When a relay station sees a ClientHello message in an upstream flow for which it has not seen the down-
stream SYN|ACK packet, and does not recognize a tag in the random nonce, they gossip this nonce, along with the server IP address
and the proposed list of ciphersuites, to nearby relay stations (1). Each of these relay stations checks the gossipped nonce for a tag us-
ing its own private key. If it was tagged for them, and they observe the downstream half of the flow, they perform a challenge-response
protocol with the upstream station to receive the client IP address, and wait for a future TLS session between the client and the overt
site to begin (2). When the user next makes a connection to the same overt site (3), they will generate the new client exponent as a
hash of the previous client-relay shared secret s′ = H3(grs‖server_ip‖ρ). The downstream relay can reconstruct the client exponent
and the new ClientHello random nonce themselves. After seeing the server’s handshake messages, the relay can compute the TLS mas-
ter secret (4) and replace downstream content. After the tagging phase, the upstream relay station will continue to send copies of the
upstream data to the downstream server, however, this communication is not time critical.

text string χ = server_ip‖ρ that depends only on the
server’s IP address and the first 4 bytes of the Client-
Hello random nonce. Removing the TLS session ID from
the context string will not affect the security of the
scheme as an adversarial censor is still unable to per-
form a tag replay attack. In this attack, a censor would
observe a suspect flow and then initiate a TLS connec-
tion to the same overt site, reusing the suspect Client-
Hello random nonce in the hopes of observing their own
decoy routing session. Such an attack would require the
censor to generate the correct TLS session key match-
ing the tag without the client or the relay private secret,
which violates the security of public-key cryptography.

We give an overview of our asymmetric solution in
Figure 3. A client begins an asymmetric decoy routing
session by generating a random secret s and composing
the steganographic tag gs‖H1(grs‖χ) for the ClientHello
random nonce using the public key, gr, of a relay station
in the downstream half of the flow. Each relay station
has its own public key and these are distributed along
with the client-side software to the client. The client
computes their secret exponent in the key exchange part
of the TLS handshake from the client-relay shared se-
cret, grs by seeding a secure pseudo-random number
generator with H2(grs‖χ). When a relay station in the
upstream half of the flow receives a ClientHello message
for which it does not recognize the tag, and for which
it has not seen the SYN|ACK packet for the flow (in-
dicating routing asymmetry), it gossips the ClientHello

random nonce along with the flow’s context information
(i.e., the server IP address and ρ), as well as ciphersuite
information, over encrypted connections to nearby relay
stations that could possibly be on the downstream path
of the flow. If a relay station receives this information
and recognizes the tag, it performs a challenge-response
protocol with the upstream station to prove that it rec-
ognized the tag and receive all further records in that
flow. We discuss this challenge-response protocol further
in Section 3.1.3. It then saves the client and server IP
addresses in a table along with the client-relay shared
secret grs, and waits for future connections from the
client to the same overt site. We emphasize that this
gossipped message does not need to be received by the
downstream station before the overt site responds to the
ClientHello message. If it is late, it simply acts as a reg-
istration step, allowing the downstream station to suc-
cessfully use the next asymmetric connection between
the client and the same overt site.

To compute the TLS master secret for a decoy rout-
ing session, the relay station needs three values: 1) the
premaster secret, computed from the tag in the Client-
Hello random nonce and the server’s public key in the
ServerKeyExchange message, 2) the ClientHello ran-
dom nonce, and 3) the ServerHello random nonce. In
the event that the downstream relay station receives
the tag and flow information before the overt site has
sent the ServerHello message of the TLS handshake, it
can proceed to compute the TLS master secret for the

Secure asymmetry and deployability for decoy routing systems 10

current session. If the downstream station has missed
the ServerHello message by the time the gossip proto-
col completes, it waits for the next connection from the
client to the same overt site.

The next time a client makes a connection to the
same overt site, the client computes the new secret ex-
ponent used to construct the steganographic tag as the
hash of the previous client-relay shared secret and the
IP address of the overt site: s′ = H3(grs‖server_ip‖ρ)
where the first 4 bytes of the ClientHello random nonce,
ρ, are generated from the previous shared secret grs.1

They then place their tag, gs′‖H1(grs′‖χ), in the Client-
Hello random nonce of the new TLS session along
with the deterministically generated first 4 bytes. When
a downstream relay station receives the server hand-
shake messages, they extract the ServerHello random
nonce, ServerKeyExchange parameters, and compute
the client’s secret exponent and the ClientHello random
nonce from the saved client-relay shared secret, grs, and
the server IP address.

After computing the TLS master secret for the ses-
sion, the relay station attempts to decrypt the down-
stream TLS Finished message. If the decryption is suc-
cessful, it replaces the hash of the Finished message,
finished_hash with MACH4(grs′‖χ)(finished_hash).
When the client receives the Finished message, they will
compute the keyed MAC of the unmodified TLS Fin-
ished message and compare the result with the received
value. If they received an unmodified Finished message,
the flow was not successfully intercepted by a relay sta-
tion. If they received the keyed MAC, they know the
flow has been intercepted and a decoy routing session
has begun.

3.1.2 Asymmetric Proxying

After the TLS handshake, the downstream relay sta-
tion begins to proxy information between the client and
a covert site. All three symmetric systems rely on up-
stream data from the client in order to establish a con-
nection to a covert site and relay upstream data from the
client to the covert site. We note that in this stage, the
amount of upstream data from the client to the covert
site is typically far less than the downstream covert
data. To retrieve covert data from an upstream relay
station, the downstream relay station will perform a

1 The OUS should therefore be a browser whose TLS implemen-
tation uses random data instead of a timestamp in that field.

challenge-response protocol with the upstream station,
proving the session has been tagged for their private
key and signalling that they wish to receive TLS ap-
plication data from the upstream half of the flow. If
successful, the upstream station will proceed to funnel
upstream TLS records (over a point-to-point encrypted
and authenticated connection) to the downstream sta-
tion, which then decrypts the TLS records and proceeds
in the usual manner. The sending of these upstream TLS
records has no time constraints; they can arrive at the
downstream station asynchronously with downstream
data from the covert site or (in the case of Slitheen) the
overt site. Any delay in the receipt of this data will not
affect the security or correctness of the system, but only
the latency experienced by the client in their browsing
of covert content. The downstream station will make
a connection to the covert site specified by the client
and send the client’s upstream covert data through this
connection. Telex and Curveball will then deliver down-
stream covert data directly to the client, while Slitheen
will insert it into downstream leaf resources.

3.1.3 Challenge-Response Protocol

We require the downstream relay station to perform a
challenge-response protocol with the upstream gossip
station in order to receive 1) the client information nec-
essary to recognize future tagged flows, and 2) the up-
stream TLS records during the proxy phase of the decoy
routing session. The reason for this requirement is to
mitigate denial-of-service attacks on upstream stations
and protect the privacy of both tagged and untagged
traffic that passes through each upstream relay station.
While the amount of additional data leakage in our gos-
sip protocol is small (all ASes on the path between the
client and the overt site have access to the same infor-
mation), this prevents the usage of our decoy routing
system by adversaries in expanding their ability to per-
form mass surveillance on Internet metadata.

First, to prove to the upstream station that they rec-
ognize one of the gossipped ClientHello tags, the down-
stream station uses the gossipped tag, context string
information (i.e., the server IP and ρ), and ciphersuite
information (i.e., the list of client-proposed cipher suites
that the decoy routing system supports as well as valid
elliptic curves if applicable) and computes all possible
client key exchange parameters for those ciphersuites.
Note that in current implementations of decoy routing
systems this is at most six different sets of parame-
ters. The downstream station then sends hashes of these

Secure asymmetry and deployability for decoy routing systems 11

Table 2. Estimates of the number of deployed downstream
and upstream stations needed to evade censorship for China, a
highly connected, routing-capable adversary. We use results from
Houmansadr et al. [20] to estimate a necessary 880 upstream sta-
tions to resist RAD attacks and results from Nasr et al. [31] to
estimate a necessary 5 downstream stations.

System Heavy-weight Light-weight
stations stations

Symmetric designs [4, 18, 24, 40] 880 N/A
TapDance [39] 0 880
Waterfall [31] 5 0
Gossip protocol + any symmetric
design

5 880

key exchange parameters to the upstream station. The
upstream station compares these hashes with the hash
of the key exchange parameters in the client’s key ex-
change message. If one of them matches, they then send
the connection information (i.e., the client IP address)
to the downstream station so that they can recognize
future tagged flows.

The downstream station must perform the above
challenge-response protocol for each subsequent TLS
session that the client sends to the overt site in order to
receive the upstream TLS records. Because the down-
stream station can compute the key exchange param-
eters for future sessions ahead of time, they can send
multiple sets of parameter hashes to the upstream sta-
tion at once. Then, the upstream station can immedi-
ately forward upstream records as soon as the client
sends a key exchange message whose parameters hash
to a matching value.

3.2 Resistance to RAD attacks

The placement of decoy routers at ASes is critical for
providing censorship resistance to users within censor-
ing regions. Schuchard et al. [32] were the first to ac-
knowledge that the number of decoy routers neces-
sary to evade censorship in the presence of a routing-
capable adversary is much greater than previous esti-
mates. Since the introduction of RAD attacks, there
have been many proposals for the optimal placement
of decoy routers [5, 20, 30, 32]. Although it is unrealis-
tic that all ASes will be willing to deploy our system,
these proposals provide an idea for how many decoy
routers will need to be deployed to provide censorship
resistance for different nation-states. We draw on the
findings of previous work to give an estimate on the
number of heavy-weight downstream and light-weight

gossip stations needed to resist censorship for China (a
highly connected routing-capable adversary).

The placement of downstream decoy routers was in-
vestigated by Nasr et al. [31] in their analysis of Wa-
terfall. They found that it is much more difficult and
expensive for adversaries to route around downstream
stations, and as a result fewer deployments were needed.
Only one deployed decoy station impacts almost a quar-
ter of the traffic from Chinese users, while 5 deployed
stations impacts 78% of the routes.

It is much easier for an adversary to route around
upstream decoy stations. We used the results from
Houmansadr et al. [20] to estimate the number of gos-
sip stations needed. Their results show that if decoy
stations are placed at 3% of ASes (outside of China and
its ring ASes), 40% of the Internet becomes unreachable
for Chinese users, meaning it is not possible for China
to avoid all deployed stations without cutting off access
to 40% of the Internet. This requires the placement of
roughly 880 gossip stations. Table 2 gives a compari-
son of the number of necessary deployments to previous
systems. We note that while we require more deploy-
ments than both TapDance and Waterfall, our gossip
stations are even more deployable than TapDance sta-
tions (which have been successfully deployed [13]): we
require no intensive computations in our upstream sta-
tions to check for tagged flows.

Our asymmetric solution in this section provides a
more secure alternative to previous proposals for the
asymmetric deployment of decoy routing systems. Our
methods can be easily integrated into Waterfall, provid-
ing a more secure alternative to client registration and
a method for relaying upstream covert data in a man-
ner that is kinder to overt sites. The tiered deployment
made possible by our approach presents a cost-effective
way for hesitant ISPs to participate in censorship resis-
tance without the need for hardware that can perform
in-line blocking or traffic replacement.

3.3 Bandwidth Overhead

The bandwidth overhead of the gossip protocol is small
compared to the existing load of routers. We also note
that the upstream stations do not need to perform
in-line blocking, drastically lightening the load com-
pared to previous symmetric systems. The overhead has
three parts: (1) that induced by gossipping the Client-
Hello data that passes through the router to a set of
known relay stations, (2) the challenge-response proto-
cols between the upstream and downstream stations,

Secure asymmetry and deployability for decoy routing systems 12

and (3) that of funnelling the upstream TLS applica-
tion records of proven tagged flows to the downstream
station. The gossipped data consists of the ClientHello
random nonce, the server IP address, and the list of
supported ciphersuites and supported elliptic curves. Its
size is dependent on the number of ciphersuites sup-
ported by the client. Using Firefox, we measured the
average gossip data size to the Alexa top 100 sites as 66
bytes. Note that there was almost no variation in the
ciphersuites offered by the client in the version of Fire-
fox we were using. Using traffic measurements from the
Center for Applied Internet Data Analysis (CAIDA) [1]
shown in Table 3 in the next section, we calculate the
bandwidth overhead of gossipping ClientHello messages
as

1 + 66 · 4430n
125000 · 2035.71 = 1 + 0.0011n

where n is the number of relay stations gossipped to. If,
for example, we set n = 5, the number of downstream
routers sufficient to defend against a highly connected
adversary such as China, the overhead is only 1.0055×
the total bandwidth through the router of the deployed
relay station. To give concrete numbers, for a router
on a typical OC48 link of a large ISP that handles ap-
proximately 2Gb/s of traffic, the router would have to
transmit an extra 11Mb/s of gossip data.

The challenge-response protocol requires the down-
stream station to send the upstream station a maximum
of six 32-byte hashes for each TLS session, given cur-
rent implementations of decoy routing systems. The up-
stream station responds with a 4-byte client IP address.
The total amount of data exchanged for a single-session
asymmetric decoy routing session is then 196 bytes. As
the base rate of decoy routing flows is very low, this
number is negligible in the calculation of the overhead.

To calculate the bandwidth of the proxy phase of the
gossip protocol, we measured the average bandwidth of
upstream TLS application data to the Alexa top 100
sites. Note that this data is only gossipped for flows
that are tagged for a downstream station, which do not
likely make up the majority of traffic through a relay
station. In our CAIDA data set, the proportion of all
data that is upstream data in TLS flows is 0.042. The
overall bandwidth overhead is then 1+0.0011n+0.042β
where β is the base rate of tagged TLS flows. Note that
for β < 10−3, the overhead induced by copying upstream
data is negligible, resulting in a total overhead of only
a few percent.

To compare the bandwidth cost of relaying up-
stream information to the downstream relay during the
proxy phase of the session to Waterfall, which has a

similar requirement, our approach requires strictly less
additional traffic. Our approach sends upstream records
directly, while Waterfall requires them to be wrapped
in appropriately sized HTTP GET requests. It is im-
portant to note that while our approach requires less
traffic overhead, it does require more effort from the
system to determine which bytes to forward, perform
the challenge-response protocol, and tunnel upstream
traffic, though the demands we place on the upstream
station are less than those required by TapDance, which
is already shown to be deployable [13]. Importantly, our
approach places zero additional load on unsuspecting
overt sites.

4 Relay station experiments
Wustrow et al. [39] found the main obstacle in convinc-
ing ISPs and ASes to deploy decoy routing systems to be
the resource requirements of existing systems in check-
ing tags and performing in-line blocking. By checking
every TLS session for steganographic tags, the deploy-
ment of decoy routing systems also has the potential
to affect the quality of service for all customers whose
traffic traverses a relay station.

We performed several experiments to determine the
impact a deployed decoy routing station would have on
existing traffic in a real-world scenario. Note that these
experiments measure the cost of the heavyweight down-
stream relay stations, of which fewer need to be deployed
to defend against routing-capable adversaries. The cost
of an upstream gossip station in terms of its impact on
quality of service is nonexistant as the station does not
perform in-line blocking of flows.

Our first set of tests aims to measure the effect tag
checking would have on the quality of service for both
TLS and non-TLS traffic of regular customers. We chose
the Slitheen tagging procedure for our measurements, as
the Slitheen modified TLS handshake requires the most
effort from a deployed relay station and the Slitheen
source code is freely available.2

For our tests, we used specialized (but off-the shelf)
hardware capable of performing in-line blocking and ef-
ficient deep-packet inspection. Our reasons for doing so
were that 1) only TapDance does not require in-line
blocking, and this feature also introduces several vul-
nerabilities that an active attacker can exploit to easily
differentiate decoy routing sessions, and 2) by showing

2 https://crysp.uwaterloo.ca/software/slitheen/

https://crysp.uwaterloo.ca/software/slitheen/

Secure asymmetry and deployability for decoy routing systems 13

Fig. 4. The network topology of our experiments. Machines des-
ignated as CAIDA clients and CAIDA servers were dedicated to
sending background traffic through the PTS, representative of
traffic sent through an OC48 link of a large ISP according to
statistics gathered from CAIDA [1].

the capabilities of existing hardware to efficiently per-
form decoy routing tasks we can target existing users
of this hardware as the first to deploy a decoy routing
system. The relay station itself consists of two parts: a
Sandvine Policy Traffic Switch (PTS) 22600 capable of
performing deep-packet inspection and flow diversion,
and a relay station server with two 10Gb/s connections
to the PTS. If a tagged flow is detected by the PTS, it
is diverted to the relay station server. The relay station
server and client machine each used 8 cores and 2GB of
RAM. The PTS is responsible for routing all traffic and
checking the tags of TLS flows. If a flow is tagged for
the relay station’s public key, the PTS then diverts the
flow through the relay station server, which performs
the rest of the tagging procedure during the TLS hand-
shake and handles the proxy phase of the decoy routing
session. We provide an overview of our experimental set
up in Figure 4.

For our tests, we gathered distribution statistics for
Internet traffic from the Center for Applied Internet
Data Analysis (CAIDA). We used the anonymized pas-
sive trace statistics through an OC48 link belonging to a

Table 3. Distribution statistics (CAIDA / our experiments)

Flow type Average flows/s Average Mb/s

HTTPS 4.43k / 4,330 (± 90) 848.81 / 840 (± 20)
HTTP 4.07k / 4,040 (± 80) 814.51 / 800 (± 20)
DNS 2.26k / 2,200 (± 100) N/A / N/A
TCP 792.74 / 790 (± 20) 246.52 / 250 (± 10)
UDP 527.53 / 530 (± 20) 125.87 / 128 (± 7)

Total 12.08k / 12,000 (± 100) 2035.71 / 2010 (± 40)

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
ClientHello TCP RTT (ms)

C
D

F

Type
Not Checking Tags

Checking Tags

Fig. 5. CDFs comparing the TCP round trip time (RTT) for TLS
ClientHello packets with tag checking on and off.

large ISP in Chicago with a maximum load of 10Gb/s.
We calculated the average flows/s and average Mbit/s
for 5 major types of flows: HTTPS, HTTP, DNS, generic
TCP, and generic UDP, gathered over the course of an
hour on April 6th, 2016 [1]. For each test, we sent a
CAIDA-representative amount of traffic through the de-
ployed relay station using four client machines and four
server machines, on opposite sides of the PTS. To test
the validity of our experiments, we measured the flow
rate and bit rate for each type of flow at the client and
server endpoints for 100 3-second captures. The results
are given in Table 3.

4.1 Impact on quality of service

Deployed relay stations must check every incoming TLS
ClientHello random nonce for a steganographic tag.
This requires a public key operation to compute the
client-relay shared secret from the first 21 bytes of the
nonce, and then a hash of the shared secret with a con-
text string. This hash is then compared to the last 7
bytes of the 28-byte random nonce. These operations
take time, and we sought to measure the latency they
add to TLS flows.

To do so, we made 1000 sequential, untagged TLS
handshakes to the Alexa top 1000 TLS sites and mea-
sured the time between when the client sent the Client-
Hello message to the time it took for the client to receive
the TCP acknowledgement of the message. We tested
two conditions: one where the PTS checked ClientHello
messages for tags, and one in which the PTS did not
check for tags. For each of these tests, we ran a CAIDA-
representative amount of background traffic through the
relay station, as described above. We present the results
in Figure 5. Although deploying a relay station has an
impact on the latency of ClientHello messages, the aver-

Secure asymmetry and deployability for decoy routing systems 14

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25
Average TCP RTT (ms)

C
D

F

Type
Not Checking Tags

Checking Tags

Fig. 6. CDFs comparing the average TCP round trip time (RTT)
for non-TLS flows with tag checking on and off.

age additional latency is 7ms, which is very low and falls
within the standard deviation of each condition (10ms).

In addition to measuring the impact a deployed re-
lay station has on the quality of service for TLS flows, we
also measured the impact it has on non-TLS flows and
whether our equipment and software introduced any ad-
ditional latency by performing deep-packet inspection to
search for ClientHello messages. We performed a similar
test as above, this time making 1000 HTTP connections
to remote sites for each condition. For each connection,
we calculated the average RTT of all TCP packets in the
flow. The results are given as CDFs in Figure 6. The ad-
ditional latency of deploying a relay station was 0.4ms,
which is very low, and falls within a standard deviation
of each condition (10ms). We note that at this time,
the Slitheen tag checking and relay station code has not
been optimized for quality of service. With further im-
provements, the results in this section for both TLS and
non-TLS flows will likely show an even lower impact on
the customers of participant ISPs.

Our results show that while the deployment of a
full downstream relay station adds additional latency
to flows due to checking for tags in ClientHello random
nonces, but the latency introduced is quite small.

4.2 Defenses against latency analysis
attacks

The security properties of Slitheen rely on the inabil-
ity of a censor to detect additional latency added by
the relay station in checking tags or replacing content
from the overt site. We conducted tests to see whether
the divert functionality of the PTS and the implementa-
tion of the relay station added enough latency to tagged
flows to allow a censor to reliably classify them as de-
coy routing sessions. We simulated an attack in which

0.000

0.025

0.050

0.075

0.100

1e−051e−041e−03
Base rate

F
−

sc
or

e

type
google.com

youtube.com

facebook.com

baidu.com

yahoo.com

(a) The F-score of classifying flows based on TLS handshake
time.

0.0

0.1

0.2

0.3

1e−051e−041e−03
Base rate

F
−

sc
or

e
type

google.com

youtube.com

facebook.com

baidu.com

yahoo.com

(b) The F-score of classifying flows based on the average TCP
round trip time (RTT).

Fig. 7. The maximum F-score (i.e., the harmonic mean of preci-
sion and recall) a censor can achieve in classifying flows as decoy
routing sessions or as regular accesses to the Alexa top 5 sites.
Precision is dependent on the base rate of decoy routing sessions.
As a result, the more prevalent decoy routing sessions are, the
higher a censor’s accuracy in classifying flows.

the censor compiles a database of expected latencies for
both decoy sessions and regular browsing sessions for
each overt destination by making 100 connections to the
top 5 Alexa sites for each condition. We then calculated
the precision and recall an adversary could achieve in
classifying flows as decoy routing or regular sessions.

We measured two different types of latency for each
flow: the time it took to perform a full TLS handshake,
and the average TCP acknowledgement time, or round-
trip time (RTT) for application data. A censor will at-
tempt to select a cut-off latency for each measurement
type to identify decoy routing sessions. All flows with a
higher latency than the cut-off value are classified as de-

Secure asymmetry and deployability for decoy routing systems 15

coy routing sessions, while all flows with a lower latency
are classified as a regular access to the overt site. We
computed the CDFs of each type of latency for decoy
routing sessions and regular accesses to each of the top
5 sites. From these CDFs, we can compute the true neg-
ative rate, τ , and false negative rate, φ, of an adversary
for each possible latency cut-off point. We calculate the
precision of the censor as:

precision = β(1− φ)
β(1− φ) + (1− β)(1− τ)

where β is the base rate of the incidence of decoy routing
sessions. A typical censor would try to maximize preci-
sion, thereby minimizing the number of regular accesses
to the overt site that are mistakenly identified as de-
coy routing sessions and blocked. By maximizing recall,
a censor ensures that they are identifying and block-
ing as many decoy routing sessions as possible. The re-
call of the censor is calculated as the true positive rate:
recall = 1− φ.

A censor can achieve a precision of 1, indicating that
they do not incorrectly classify any regular accesses to
the overt site as decoy routing sessions. However, of-
ten this means the censor can only identify a very small
portion of decoy routing sessions while the majority will
continue undetected. They can also achieve a recall of
1 by simply classifying all connections as decoy rout-
ing sessions and blocking them. For most censors, both
measures are important so we define a censor’s accu-
racy in terms of its F-score, the harmonic mean of the
precision and recall values. Precision and recall can be
weighted differently according to the individual goals of
the censor, but we consider the default equal weighting
in this paper. For each value of β, the adversary will se-
lect a cut-off value that maximizes their F-score, given
the latency distributions of each overt site. We plot the
maximum F-score values based on the latency distri-
butions for both the TLS and handshake time and the
TCP RTT for five of the Alexa top sites in Figure 7.

The maximum accuracy a censor can achieve in
identifying decoy routing sessions is very low for both
types of latency. For the majority of sites, this value
drops to almost 0 with a base rate of occurrence of de-
coy routing sessions of less than 10−4, and meaning that
if no more than one in every 10,000 connections to popu-
lar sites are decoy routing sessions, a censor is unable to
reliably determine whether or not any given flow is car-
rying censorship resistance traffic. Even with a higher
occurrence of decoy routing, the maximum F-score stays
below 0.5 for most sites, making a reasonable censor
that is unwilling to upset their population extremely

wary of classifying and blocking potential decoy routing
sessions. We note that some sites exhibit anomolous be-
haviour (e.g., google.com and youtube.com in their TCP
RTTs and TLS handshake times, respectively). Such be-
haviour can be measured by the client, and those sites
not selected as overt sites.

5 Security analysis and
improvements

Our proposal to add asymmetry to previously symmet-
ric decoy routing systems has two main advantages: it
has better security properties than previously proposed
asymmetric systems, and it provides a path for tiered
deployment, creating a less expensive defense against
routing-capable adversaries. We provide a comparison
of the security properties of existing systems and our
suggested improvements to previously symmetric sys-
tems in Table 1.

TapDance remains the only system capable of per-
forming decoy routing without requiring a relay station
to block or modify traffic. However, this feature comes at
the cost of security. We believe a better route to deploy-
ment is by providing ISPs and ASes with experimental
evidence of the impact a deployed relay station would
have on customer traffic using existing hardware capa-
ble of performing tag checks efficiently and blocking or
modifying tagged flows. By targeting ASes that already
own this hardware or showing them a clear path to de-
ployment, we are providing more evidence that decoy
routing is an attainable option and moving towards real-
world deployment. Furthermore, our asymmetric solu-
tion does not require in-line blocking for upstream re-
lays, enabling more cautious potential participants to
provide a stronger defense against RAD attacks.

5.1 Security of the Gossip Protocol

While the gossip protocol does not leak any additional
information of tagged or untagged flows to an adversary,
it does increase the number of routers that see traffic
between the client and the overt site, possibly increas-
ing the ability of a passive adversary to perform traf-
fic analysis or surviellance attacks. However, gossipped
messages do not significantly increase a censor’s ability
to detect the usage of censorship circumvention tools or
attribute them to individual users. In this section, we
discuss the impact of the gossip protocol on the secu-
rity and privacy of both users of Slitheen and non-users

google.com
youtube.com

Secure asymmetry and deployability for decoy routing systems 16

whose upstream handshake messages are gossipped to
other relay stations.

Passive adversary: The gossip protocol requires
an upstream station to send all seemingly untagged
ClientHello messages, along with the upstream TLS ap-
plication data to the downstream relay station. Note
that the gossipping of ClientHello messages is done for
all TLS handshakes that the upstream station does not
recognize as tagged and includes both untagged and po-
tentially tagged flows; therefore the gossipped messages
do not expose censorship resistance traffic.

It is worth noting that the gossipping of application
data to the downstream relay station only happens for
tagged flows. A censor that can see traffic between relay
stations could then perform a timing analysis attack
to connect outgoing connections to gossipped messages.
This is outside our threat model as we assume relay
stations exist outside of the censor’s area of influence
and therefore probably do not cross through a censor’s
control. It is also practically difficult to correlate the
TLS application records of any one flow to the encrypted
traffic sent between two relay stations. Approximately
37% of flows are HTTPS [1], meaning that a censor
observing traffic on even a small router would have to
decide which of the thousands (1/β) of TLS sessions
that data corresponded to.

Malicious relays: Our challenge-response protocol
in Section 3.1.3 prevents a malicious downstream relay
from lying about recognizing tags in order to induce
extra load on the gossip station in a denial-of-service
attack, or to increase their surveillance of flows outside
of their usual field of view. However, precautions should
be taken to prevent a censor from pretending to be an
upstream station in order to use downstream stations
as oracles to identify tagged flows. Downstream stations
should maintain a list of approved and trusted upstream
stations, as well as their public key information. This
information can be updated by relay station operators
as new upstream stations are deployed in much the same
way as the client software maintains a list of public keys
for trusted downstream stations.

5.2 Superencryption of application data

Severing or abandoning the connection with the overt
site in the proxy phase of the decoy routing session in-
troduces a vulnerability in which the server’s state of
the connection does not match the traffic that a censor
sees. The censor can exploit this in most systems using
a RAD attack or a regular TCP replay attack. Slith-

een [4], Rebound [11], and Waterfall [31] avoid this vul-
nerability by interacting with the overt site throughout
the proxy phase, modifying the contents of the TLS en-
crypted data to give covert data to the client. However,
this process of modification introduces a new vulnera-
bility to systems that use the same TLS master secret
to re-encrypt the application-level data [4, 11].

During the re-encryption of new application data, if
the relay station re-uses the same nonce, an adversary
capable of seeing the data on both sides of the relay
station could use it to decrypt or modify the data be-
tween the user and the covert site. Although this attack
falls outside the usual threat model for decoy routing,
in which we assume that the censor is unable to com-
pare traffic on both sides of the relay station, this puts
vulnerable users of censorship circumvention systems at
risk. We describe the attack in more detail, and our
solution of adding an extra layer of encryption around
covert data, in Appendix B.

6 Conclusion and future work
As the Internet becomes more centralized and the capa-
bilities of censors grow, so will their ability to filter Inter-
net traffic with increasingly sophisticated methods. It is
possible in the future that as censorship becomes more
prevalent, so will the dangers of resisting government
controls. There is a dire need for a censorship circum-
vention system that provides users with blocked content
as well as hides their usage of the system. Decoy routing
provides a promising solution to Internet censorship. Its
strong security properties, and trend of realistically ap-
propriating real, uncensored connections in the place of
mimicry have the potential to end the cat-and-mouse
game in favour of the resistor.

In this paper, we proposed a new approach to rout-
ing asymmetry that provides better security than pre-
vious asymmetric systems and a path to tiered deploy-
ment that allows for several lightweight, limited systems
to surround a powerful censor, limiting the censor’s abil-
ity to perform routing-based attacks. This work presents
the next steps towards the deployment of decoy routing
systems, however there is still much work to be done.
With more efficient implementations of the relay sta-
tion, the possible impact of deployment may be even
less than what we measured with our limited improve-
ments. We look at our results as a positive indication
that decoy routing may prove to be practical in the fu-
ture and may convince the owners of Internet routers to
consider participating in censorship circumvention.

Secure asymmetry and deployability for decoy routing systems 17

Acknowledgements
The work benefitted from the use of the CrySP RIPPLE
Facility at the University of Waterloo. We especially
thank Lori Paniak (University of Waterloo) and Dave
Dolson (Sandvine) for their technical expertise. The au-
thors thank the Ontario Graduate Scholarships Pro-
gram for funding Bocovich, and Sandvine and NSERC
for grant STPGP-463324.

References
[1] The CAIDA UCSD Statistical information for the CAIDA

Anonymized Internet Traces. http://www.caida.org/data/
passive/passive_trace_statistics.xml, 2016. Accessed 22-
February-2017.

[2] Simurgh Aryan, Homa Aryan, and J. Alex Halderman. Inter-
net censorship in Iran: A first look. In 3rd USENIX Work-
shop on Free and Open Communications on the Internet
(FOCI), 2013.

[3] Diogo Barradas, Nuno Santos, and Luís Rodrigues.
DeltaShaper: Enabling unobservable censorship-resistant
TCP tunneling over videoconferencing streams. Privacy
Enhancing Technologies, 2017(4):1–18, 2017.

[4] Cecylia Bocovich and Ian Goldberg. Slitheen: Perfectly
imitated decoy routing through traffic replacement. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, pages 1702–1714.
ACM, 2016.

[5] Jacopo Cesareo, Josh Karlin, Michael Schapira, and Jen-
nifer Rexford. Optimizing the placement of implicit proxies.
Technical report, Princeton, NJ, USA, 2012.

[6] Roger Dingledine. Obfsproxy: The next step in the censor-
ship arms race. https://blog.torproject.org/blog/obfsproxy-
next-step-censorship-arms-race, February 2012. [Online;
accessed 29-February-2016].

[7] Roger Dingledine and Nick Mathewson. Design of a
blocking-resistant anonymity system. Technical report, 2006.

[8] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. In 13th USENIX
Security Symposium, pages 303–320, 2004.

[9] Kevin P. Dyer, Scott E. Coull, and Thomas Shrimpton. Mar-
ionette: A programmable network-traffic obfuscation system.
In 24th USENIX Security Symposium, pages 367–382, 2015.

[10] Tariq Elahi, John A Doucette, Hadi Hosseini, Steven J Mur-
doch, and Ian Goldberg. A framework for the game-theoretic
analysis of censorship resistance. Proceedings on Privacy
Enhancing Technologies, 2016(4):83–101, 2016.

[11] D. Ellard, C. Jones, V. Manfredi, W.T. Strayer, B. Thapa,
M. Van Welie, and A. Jackson. Rebound: Decoy routing on
asymmetric routes via error messages. In Local Computer
Networks (LCN), 2015 IEEE 40th Conference on, pages 91–
99, October 2015.

[12] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and
Vern Paxson. Blocking-resistant communication through

domain fronting. Proceedings on Privacy Enhancing Tech-
nologies, 2015(2):46–64, 2015.

[13] Sergey Frolov, Fred Douglas, Will Scott, Allison McDonald,
Benjamin VanderSloot, Rod Hynes, Adam Kruger, Michalis
Kallitsis, David G. Robinson, Steve Schultze, Nikita Borisov,
Alex Halderman, and Eric Wustrow. An ISP-scale deploy-
ment of TapDance. In 7th USENIX Workshop on Free and
Open Communications on the Internet (FOCI 17), Vancou-
ver, BC, 2017. USENIX Association.

[14] John Geddes, Max Schuchard, and Nicholas Hopper. Cover
your ACKs: Pitfalls of covert channel censorship circumven-
tion. In Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’13, pages
361–372, New York, NY, USA, 2013. ACM.

[15] Yihua He, Michalis Faloutsos, Srikanth Krishnamurthy, and
Bradley Huffaker. On routing asymmetry in the internet.
In Global Telecommunications Conference, 2005. GLOBE-
COM’05. IEEE, volume 2, pages 6–pp. IEEE, 2006.

[16] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath.
Website fingerprinting: Attacking popular privacy enhancing
technologies with the multinomial naïve-bayes classifier. In
Proceedings of the 2009 ACM Workshop on Cloud Comput-
ing Security, CCSW ’09, pages 31–42, 2009.

[17] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov.
The parrot is dead: Observing unobservable network com-
munications. In 2013 IEEE Symposium on Security and
Privacy, pages 65–79, May 2013.

[18] Amir Houmansadr, Giang T.K. Nguyen, Matthew Caesar,
and Nikita Borisov. Cirripede: Circumvention infrastruc-
ture using router redirection with plausible deniability. In
18th ACM Conference on Computer and Communications
Security, CCS ’11, pages 187–200, 2011.

[19] Amir Houmansadr, Thomas J Riedl, Nikita Borisov, and
Andrew C Singer. I want my voice to be heard: IP over
Voice-over-IP for unobservable censorship circumvention.
In 2013 Network and Distributed System Security (NDSS)
Symposium, 2013.

[20] Amir Houmansadr, Edmund L Wong, and Vitaly Shmatikov.
No direction home: The true cost of routing around decoys.
In 2014 Network and Distributed System Security (NDSS)
Symposium, 2014.

[21] Amir Houmansadr, Wenxuan Zhou, Matthew Caesar, and
Nikita Borisov. Sweet: Serving the web by exploiting email
tunnels. arXiv preprint arXiv:1211.3191, 2012.

[22] Wolfgang John, Maurizio Dusi, and K. C. Claffy. Estimat-
ing routing symmetry on single links by passive flow mea-
surements. In Proceedings of the 6th International Wire-
less Communications and Mobile Computing Conference,
IWCMC ’10, pages 473–478, New York, NY, USA, 2010.
ACM.

[23] Antoine Joux. Authentication failures in NIST version of
GCM. 2006.

[24] Josh Karlin, Daniel Ellard, Alden W Jackson, Christine E
Jones, Greg Lauer, David P Mankins, and W Timothy
Strayer. Decoy routing: Toward unblockable internet com-
munication. In USENIX workshop on free and open commu-
nications on the Internet, 2011.

[25] Sanja Kelly, Mai Truong, Adrian Shahbaz, Madeline Earp,
Jessica White, and Rose Dlougatch. Silencing the mes-
senger: Communication apps under pressure. https:

http://www.caida.org/data/passive/passive_trace_statistics.xml
http://www.caida.org/data/passive/passive_trace_statistics.xml
https://blog.torproject.org/blog/obfsproxy-next-step-censorship-arms-race
https://blog.torproject.org/blog/obfsproxy-next-step-censorship-arms-race
https://freedomhouse.org/report/freedom-net/freedom-net-2016

Secure asymmetry and deployability for decoy routing systems 18

//freedomhouse.org/report/freedom-net/freedom-net-2016,
2016. [Online; accessed 28-April-2017].

[26] David McGrew and John Viega. The galois/counter mode of
operation (GCM). 2005.

[27] Richard McPherson, Amir Houmansadr, and Vitaly
Shmatikov. Covertcast: Using live streaming to evade in-
ternet censorship. Proceedings on Privacy Enhancing Tech-
nologies, 2016(3):212–225, 2016.

[28] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad De-
rakhshani, and Ian Goldberg. Skypemorph: Protocol ob-
fuscation for Tor bridges. In 2012 ACM Conference on
Computer and Communications Security, CCS ’12, pages
97–108, 2012.

[29] Zubair Nabi. The anatomy of web censorship in Pakistan. In
3rd USENIX Workshop on Free and Open Communications
on the Internet (FOCI), 2013.

[30] Milad Nasr and Amir Houmansadr. Game of decoys: Op-
timal decoy routing through game theory. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 1727–1738. ACM,
2016.

[31] Milad Nasr, Hadi Zolfaghari, and Amir Houmansadr. The
waterfall of liberty: Decoy routing circumvention that resists
routing attacks. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’17, pages 2037–2052, 2017.

[32] Max Schuchard, John Geddes, Christopher Thompson, and
Nicholas Hopper. Routing around decoys. In 2012 ACM
Conference on Computer and Communications Security,
CCS ’12, pages 85–96, 2012.

[33] Y. Schwartz, Y. Shavitt, and U. Weinsberg. On the diver-
sity, stability and symmetry of end-to-end Internet routes. In
2010 INFOCOM IEEE Conference on Computer Communi-
cations Workshops, pages 1–6, March 2010.

[34] M. C. Tschantz, S. Afroz, Anonymous, and V. Paxson. SoK:
Towards grounding censorship circumvention in empiricism.
In 2016 IEEE Symposium on Security and Privacy (SP),
pages 914–933, May 2016.

[35] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson,
and Ian Goldberg. Effective attacks and provable de-
fenses for website fingerprinting. In Proceedings of the 23rd
USENIX Conference on Security Symposium, SEC’14, pages
143–157, 2014.

[36] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran,
Linda Briesemeister, Steven Cheung, Frank Wang, and
Dan Boneh. StegoTorus: A camouflage proxy for the Tor
anonymity system. In 2012 ACM Conference on Computer
and Communications Security, CCS ’12, pages 109–120,
2012.

[37] Philipp Winter and Stefan Lindskog. How the Great Firewall
of China is blocking Tor. In 2nd USENIX Workshop on Free
and Open Communications on the Internet (FOCI), 2012.

[38] Philipp Winter, Tobias Pulls, and Juergen Fuss. Scramble-
Suit: A polymorphic network protocol to circumvent censor-
ship. In 12th ACM Workshop on Workshop on Privacy in
the Electronic Society, WPES ’13, pages 213–224, 2013.

[39] Eric Wustrow, Colleen M. Swanson, and J. Alex Halderman.
TapDance: End-to-middle anticensorship without flow block-
ing. In 23rd USENIX Security Symposium, pages 159–174,
2014.

[40] Eric Wustrow, Scott Wolchok, Ian Goldberg, and J. Alex
Halderman. Telex: Anticensorship in the network infrastruc-
ture. In 20th USENIX Security Symposium, 2011.

A Modifications to TLS
Most decoy routing systems require modifications to the
TLSv1.2 handshake. In this section, we describe the
modifications used by Slitheen [4] described in Section 3,
and directly compare them to the original TLSv1.2
handshake. These are very similar to the modifications
used in Telex [40] and Curveball [24].

Figure 8 gives an overview of a TLS handshake, with
modifications shown in red. The modifications do not
change the number or the size of the messages sent be-
tween the client and the server, only the contents of
the messages. This is done in a way to avoid detection
by the censor: only a party in possession of the client
secret, the relay secret, or the TLS master secret can
detect that modifications have been made.

The first modification happens in the generation of
the ClientHello random nonce. This nonce is usually
randomly generated and is used in the computation of
the TLS master secret. In Slitheen, the last 28 bytes of
this 32 byte nonce are replaced with a steganographic
tag, gs‖H1(grs‖χ), where s is a secret generated by
the client, gr is the public key of a relay station, and
χ = server_ip‖ClientHello random[0..3] is a con-
text string that consists of the server’s IP address and
the first 4 bytes of the ClientHello random nonce (in
older versions of popular TLS libraries, this was often
a timestamp; however, in newer versions it is typically
generated randomly). The tag is recognizable only to
the relay station with the private key r, and appears
indistinguishable from random to any other observer.

The next modification is in the computation of val-
ues in the ClientKeyExchange message. Instead of ran-
domly generating her private key exchange parameter,
the client generates it from the previously generated tag.
The private key is the result of feeding the client-relay
shared secret H2(grs‖χ) into a pseudo-random number
generator. She then computes her public parameters in
the ClientKeyExchange message from this private key.
The relay station also has the ability to compute the
private key, allowing it to later man-in-the-middle the
TLS connection.

The last modification to the handshake is in the
downstream Finished message, sent from the server to

https://freedomhouse.org/report/freedom-net/freedom-net-2016

Secure asymmetry and deployability for decoy routing systems 19

Fig. 8. An overview of the TLS handshake. Modified messages
are shown in red.

the client. This message usually contains a hash of all
previously seen handshake messages, finished_hash.
The relay station intercepts this message and re-
places it with a MAC that depends on the original
Finished message and the client-relay shared secret,
MACH4(grs‖χ)(finished_hash). The purpose of this
modification is to alert the client that the session can
safely be used for decoy routing.

B Superencryption of covert data
Rebound [11], Slitheen [4], and Waterfall [31] require
the modification and re-encryption of TLS application
data that passes through the relay station. In Rebound
and Slitheen, this data must be re-encrypted with the
same TLS master secret. Some TLS modes of opera-
tion, such as AES-GCM (see Figure 9), rely on a public
nonce in addition to the secret key. It is important to the
security of AES-GCM that two different messages are
never encrypted with the same nonce and the same key.
However, many implementations of AES-GCM mode
for TLS use sequential nonces for each message, and
so when Slitheen or Rebound replaces message contents
with covert data, it must reuse the nonce to avoid flag-
ging to the observing censor that the censorship resis-
tance system is in use. However, this presents a security
problem as a third party capable of observing the ci-
phertext on both sides of the relay station can exploit
patterns in the underlying plaintext to decrypt both ci-
phertext messages and modify the underlying plaintext
without detection.

The original plaintext, P1, will contain part of the
HTTP response body of the original overt image, while
the modified plaintext, P2, will contain covert data to
the user. The corresponding ciphertexts (limited to 1
block each for simplicity), seen by an observer, are com-

Fig. 9. AES in Galois Counter Mode (GCM) [26]. The counter is
initialized to zero and incremented for each encryption step, in
which the nonce is concatenated to the counter and encrypted
with the key k. This encrypted block is XOR’d with a plaintext
block (shown in orange) to produce the corresponding ciphertext
block (shown in blue). Additional Authentication Data (AAD)
and the ciphertext blocks are multiplied by the hash key H =
AESk(0) and XOR’d together to produce the authentication tag
(shown in yellow).

puted as:
C1 = Ek(n||0311)⊕ P1

C2 = Ek(n||0311)⊕ P2

where E is AES encryption, and n is the nonce. The
observer can then compute C1 ⊕ C2 = P1 ⊕ P2, and
then exploit patterns in the underlying plaintexts to re-
cover both P1 and P2. If the client was using Slitheen to
browse a plaintext covert site, this two-time pad attack
is trivial. In addition to breaking the client’s confiden-
tiality, an attacker can also modify the plaintext and
compute the correct authentication tag [23]. Given the
ciphertexts C1 and C2, as shown above, and the corre-
sponding authentication tags (where A is one block of
AAD for simplicity):

T1 = ((A · Ek(0)⊕ C1) · Ek(0)⊕ L) · Ek(0)⊕ Ek(n||032)

T2 = ((A · Ek(0)⊕ C2) · Ek(0)⊕ L) · Ek(0)⊕ Ek(n||032)

where L = len(A)‖len(C) and multiplications are per-
formed in GF (2128).

The adversary can compute:

Ek(0) =
√

T1 ⊕ T2
C1 ⊕ C2

Secure asymmetry and deployability for decoy routing systems 20

and from that, since the additional authentication
data A is known:

Ek(n||032) = (((A ·Ek(0)⊕C1) ·Ek(0)⊕L) ·Ek(0))⊕T1.

This gives them everything necessary to compute
their own tag for an arbitrary ciphertext C3:

T3 = ((A · Ek(0)⊕ C3) · Ek(0)⊕ L) · Ek(0)⊕ Ek(n||032)

In the event that a user is browsing a covert site
with TLS, the consequences of both of these attacks are
mitigated. An adversary would be unable to decrypt the
client’s data, and any tampering would be detected in
the TLS records sent between the client and the covert
site. However, an adversary could use this to perform a
targeted denial of service attack against decoy routing
users. This attack is exceptionally damaging when the
user of Slitheen is browsing a plaintext site, giving a
third-party observer the ability to determine not only
that the client is using Slitheen, but also what covert
data they are receiving.

In Rebound, the same attack allows an adversary to
determine that a change in the underlying plaintext has
been made (and at what points the change has been
made), but the randomness of the encrypted requests
and responses between the client and relay station pre-
vents an attacker from modifying the contents of the
plaintext or discovering the nature of covert content.

To defend against this attack, we propose adding
an additional layer of authenticated encryption under
the ciphertext on the downstream side of the relay sta-
tion, both in order to make it completely random, and
to protect against modification. We chose this method
rather than simply re-encrypting with a different, ran-
domly generated, nonce as a censor could detect the
usage of a non-sequential nonce. The keys for this “su-
perencryption” step may be derived from the client ID
in Slitheen, or the client-relay shared secret in Rebound
by feeding it into a PRF.

Both the client and the relay station generate two
superencryption keys: one to encrypt a 128-bit header
and another to encrypt a variable-length covert data
body. The header consists of an 4-byte counter and a 4-
byte acknowledgement field. The counter is incremented
for each chunk of covert data, and doubles as a mech-
anism for ordering covert data. In both Slitheen and
Rebound, data to and from the covert site has the po-
tential to arrive at the relay station and client, respec-
tively, in a different order than it was written, as it
can be distributed across multiple TCP connections to
different overt sites. A counter allows each party to pro-
cess the covert data in order, acknowledge the receipt

of data, and retransmit data that was lost. The client
and the server acknowledge received covert data in a
similar style to TCP to prevent the loss of covert data
chunks due to route-flapping or RAD attacks from a
routing-capable adversary. The remainder of the header
contains a 2-byte stream ID that indicates which con-
nection to a covert server the data belongs to, the 2-byte
length of the covert data chunk, and the 2-byte length
of randomly generated padding. The last remaining 2
bytes of the header are padded with zeros. The covert
data itself is encrypted using an authenticated encryp-
tion mode such as AES-GCM that is indistinguishable
from random by an attacker.

Upon the receipt of a new chunk of covert content,
the client or relay station will first decrypt the covert
data header and extract the length of the covert data
chunk. The client should verify that the counter is as
expected and the padding at the end of the header ex-
ists. The client can then decrypt the covert data and
send it to the client’s browser.

	Secure asymmetry and deployability for decoy routing systems
	1 Introduction
	2 Censorship Circumvention
	2.1 Decoy routing
	2.2 Known challenges to deployment

	3 Routing Asymmetry
	3.1 Asymmetric Gossip Protocol
	3.1.1 Asymmetric Tagging
	3.1.2 Asymmetric Proxying
	3.1.3 Challenge-Response Protocol

	3.2 Resistance to RAD attacks
	3.3 Bandwidth Overhead

	4 Relay station experiments
	4.1 Impact on quality of service
	4.2 Defenses against latency analysis attacks

	5 Security analysis and improvements
	5.1 Security of the Gossip Protocol
	5.2 Superencryption of application data

	6 Conclusion and future work
	A Modifications to TLS
	B Superencryption of covert data

