
Arctic: Lightweight and Stateless
Threshold Schnorr Signatures

Chelsea Komlo and Ian Goldberg

1 University of Waterloo & NEAR One
2 University of Waterloo

ckomlo@uwaterloo.ca, iang@uwaterloo.ca

Abstract. Threshold Schnorr signatures are seeing increased adoption
in practice, and offer practical defenses against single points of failure.
However, one challenge with existing randomized threshold Schnorr sig-
nature schemes is that signers must carefully maintain secret state across
signing rounds, while also ensuring that state is deleted after a signing
session is completed. Failure to do so will result in a fatal key-recovery
attack by re-use of nonces.

While deterministic threshold Schnorr signatures that mitigate this is-
sue exist in the literature, all prior schemes incur high complexity and
performance overhead in comparison to their randomized equivalents. In
this work, we seek the best of both worlds; a deterministic and stateless
threshold Schnorr signature scheme that is also simple and efficient.

Towards this goal, we present Arctic, a lightweight two-round threshold
Schnorr signature that is deterministic, and therefore does not require
participants to maintain state between signing rounds. As a building block,
we formalize the notion of a Verifiable Pseudorandom Secret Sharing
(VPSS) scheme, and define VPSS1, an efficient VPSS construction. VPSS1

is secure when the total number of participants is at least 2t− 1 and the
adversary is assumed to corrupt at most t− 1; i.e., in the honest majority
model.

We prove that Arctic is secure under the discrete logarithm assumption in
the random oracle model, similarly assuming at minimum 2t− 1 number
of signers and a corruption threshold of at most t−1. For moderately sized
groups (i.e., when n ≤ 20), Arctic is more than an order of magnitude
more efficient than prior deterministic threshold Schnorr signatures in
the literature. For small groups where n ≤ 10, Arctic is three orders of
magnitude more efficient.

1 Introduction

Threshold signature schemes allow a subset of at least µ out of n possible parties
to cooperate to produce a signature over a single message, while preserving
security when up to t − 1 signers may be corrupted, where µ ≤ n and t ≤ µ.
Threshold signatures offer practical security benefits, allowing for dynamic key

management and defense in depth against potential adversarial corruptions.
While threshold signatures can be instantiated by simply concatenating multiple
individual signatures into a single joint signature, a practical goal for threshold
signatures is to preserve compatibility with existing single-party signature schemes,
to minimize implementation complexity.

In this work, we focus our attention on threshold Schnorr signatures; i.e, a
threshold signature scheme that is compatible with the (single-party) Schnorr
signature verification algorithm [52]. Efficient (two-round) threshold Schnorr
signatures exist in the randomized setting [1,36,51], where each party is assumed
to securely maintain state between signing rounds and have access to good sources
of randomness. However, efficient and deterministic threshold Schnorr signatures
has thus far remained an elusive goal.

Why Deterministic Threshold Signatures? Producing threshold signatures
in a deterministic manner is useful for two reasons. First, it is useful as a general
defense-in-depth measure, to protect against the event of temporarily losing access
to good sources of randomness [50], such as if a machine randomly rebooted.

Second, threshold Schnorr signature schemes generally require participants to
perform multiple rounds of communication before a joint signature can be issued.
As such, participants must keep state between each round, and carefully delete
state once a signing protocol is completed. In the setting where the signer must
produce signatures at increasing scale and in a concurrent setting, managing state
can become a significant performance bottleneck. Further, secure management of
secret state can be considered a security risk. In particular, for threshold Schnorr
signatures, participants must generate secret nonces for each signing session. If
a participant’s state is mismanaged in such a way that it is used even twice, a
fatal key-recovery attack is possible. However, in the setting where machines can
go offline at any time, and signing is done at scale and concurrently, such careful
management of secret state becomes even more challenging.

The Challenge of Efficient Deterministic Multi-Party Schnorr Signa-
tures. While the goal of efficient and deterministic multi-party Schnorr signature
schemes is desirable, producing such schemes has proven difficult. The challenge
can be summarized as follows. While honest participants can certainly pick
their nonces deterministically (say, by hashing their secret signing share and the
message), a malicious party might deviate from the protocol and pick its nonce at
random. Recall that for Schnorr signatures, the output signature σ = (R, z) is a
commitment R and response z, satisfying the relation gz = R · pkc for a challenge
c ← H(R, pk,m). In the setting for threshold Schnorr signatures, where (R, z)
are contributed to by all signing parties, one party deviating from the protocol
results in the challenge c likewise changing. If honest parties cannot verify that
other parties followed the protocol, such a deviation would allow an adversary to
perform a key recovery attack with as little as two signing queries.

Prior deterministic multi-party Schnorr signature schemes in the literature [25,
39, 46] can be broken down into two general approaches. We give an overview of

2

the approaches that support the general threshold setting with general (t, µ, n)
in Table 1, with more context now.

The first approach requires that signers output zero-knowledge proofs that a
Pseudorandom Function (PRF) was evaluated correctly [25,46]. However, this
approach adds undesirable performance and complexity overhead. For example,
while MuSig-DN [46] requires only two network rounds, proof generation requires
approximately 1 second (regardless of the number of signers) for 256-bit secu-
rity, and verification requires at least 10nms. Similarly, the scheme by Garillot
et al. [25] requires three rounds of communication between signers and high
complexity and bandwidth overhead.

The second approach by Kondi et al. [39] is to use as a black box a Pseu-
dorandom Correlation Generator (PCG) [9] to generate nonces in a verifiable
manner [39]. However, while the PCG used in their construction can support
2-of-2 signing, [39,47], it remains an open problem as to how to extend such a
PCG to the general threshold setting for any t, µ, or n [38]. As such, the scheme
by Kondi et al. [39] supports only the t = µ = n = 2 setting.

Therefore in this work, we address the following question:

Can we design a simple, deterministic, and stateless two-round threshold
Schnorr signature scheme, with similar efficiency to existing randomized
schemes, and acceptable security assumptions in practice?

1.1 Our Results

We answer the above question in the affirmative. In particular, we present Arctic,
a deterministic and stateless threshold Schnorr signature scheme. For moderately
sized groups (i.e., when n ≤ 20), Arctic is more than an order of magnitude more
efficient than existing deterministic schemes in the literature; it is three orders
of magnitude more efficient when n ≤ 10. For even larger groups, Arctic scales
linearly relative to the number of processing cores available to most machines.
Signers in Arctic are required to generate and maintain secret keys, but otherwise
do not need to manage secret state.

To achieve efficient determinism, Arctic requires three tradeoffs, as follows.

Tradeoff One: Honest Majority Assumption. The first tradeoff is in the number of
required signers; Arctic requires µ ≥ 2t− 1 parties to participate in signing. This
requirement is because Arctic assumes the honest majority model. We discuss
in Section 1.2 why the assumption of an honest majority is acceptable for some
real-world applications.

Tradeoff Two: Performance Scales Relative to Number of Participants. The
second tradeoff is in the required overhead as the signing set grows large. Under
the hood, Arctic employs a replicated secret sharing scheme [32], and so requires
participants to store a secret key of size

(
n−1
t−1

)
. As such, Arctic outperforms other

schemes in the literature for moderately sized groups, but incurs a crossover
point as the signing set grows large.

3

C
om

p
u
ta
ti
on

B
an
d
w
id
th

N
u
m
.
R
ou
n
d
s

A
ss
u
m
p
ti
on
s

M
in
.
S
ig
n
er
s

MuSig-DN [46] 14210 + 24(n− 1) group 1189 bytes 2 DDH n

GKMN21 [25]
132, 000(t− 1) AES

1.01(t− 1) MB 3 PRF t
256(t− 1) field

Arctic 2t2 − t+ 2 group
97 bytes 2 DL 2t− 1

(this work) 2
(
n−1
t−1

)
field, 2

(
n−1
t−1

)
hash

Table 1: Efficiency comparison of multi-party deterministic Schnorr signature
schemes in the random oracle model (ROM) that support general choices of n (i.e.,
we exclude 2-of-2 schemes). Here, n denotes the number of total possible signers,
t denotes the corruption threshold. Computation denotes the computational
overhead per signing participant, and is given with respect to the operations that
dominate; estimates for MuSig-DN are given with respect to a 256-bit elliptic
curve. More information is given in the full version of this work [37, App.A].
Bandwidth denotes the bandwidth sent by each signing participant, and similarly
is given with respect to a 256-bit elliptic curve [25,46].

Tradeoff Three: No Identifiable Abort. The final tradeoff is that Arctic as defined
does not support identifiable abort. While the protocol allows honest participants
to identify that misbehavior has occurred, the protocol does not support identi-
fying which participant caused the abort (which is possible for MuSig-DN [46],
for example). However, we give a discussion on how Arctic can be extended to
support identifiable abort, and indeed robustness, in the honest supermajority
setting (i.e., when µ ≥ 3t− 2).

Verifiable Pseudorandom Secret Sharing (VPSS). As a building block, we
first formalize a cryptographic primitive that we call a Verifiable Pseudorandom
Secret Sharing (VPSS) scheme. While pseudorandom secret sharing is a standard
notion in the literature, and verifiability of such schemes had been employed
implicitly in maliciously secure MPC-based schemes [4], we present a formal
definition for a VPSS and give game-based security notions [3], building on
existing notions of verifiable random functions in the literature [19,24,43,44].

Intuitively, a pseudorandom secret sharing scheme allows a coalition of players
holding pre-established secret shares of a random secret to generate shares
of additional pseudorandom secrets. A verifiable pseudorandom secret sharing
scheme is simply an extension to allow for public verifiability by collectively
verifying the outputs for the set of participants. As such, misbehavior of players
in a VPSS can be detected assuming some threshold of honest participants. As

4

we will see in the case of Arctic, a VPSS allows for more efficiently verifying
the correctness of the output of a pseudorandom function that is distributed
among a set of players, without requiring each player individually to produce a
zero-knowledge proof that it followed the protocol.

We then define a concrete VPSS construction that we call VPSS1 that builds
upon the pseudorandom secret sharing scheme by Cramer et al. [15]. We augment
the scheme by Cramer et al. to additionally define a verification algorithm that is
publicly verifiable even when players only publish commitments to their shares;
i.e., it preserves secrecy of players’ shares while allowing players to verify that all
other players followed the protocol honestly. VPSS1 is efficient for moderately
sized groups; concretely, evaluation requires

(
n−1
t−1

)
sub-microsecond hash and field

operations, and verification requires 2t2 − t group exponentiations, where t is the
corruption threshold. We prove that VPSS1 is secure assuming the existence of a
secure hash function in the honest majority model, i,e., when µ ≥ 2t− 1, where
µ is the minimum number of participants required to participate in the protocol.
Additionally, we require that as n grows, t remains O(1) so that

(
n−1
t−1

)
= poly(n).

A New Two-Round, Deterministic, and Stateless Threshold Schnorr
Signature. Next, we introduce Arctic, a new two-round, deterministic, and
stateless threshold Schnorr signature. Arctic is an order of magnitude more
efficient than related schemes in the literature for moderately sized groups
(n ≤ 20), due to its use of VPSS1 as a building block. Furthermore, Arctic
supports the general threshold setting for any t, µ and n, so long as µ ≥ 2t− 1
and µ ≤ n. We give an overview of Arctic in Table 1 in comparison to related
schemes in the literature.

At a high level, Arctic uses VPSS1 in the first round of signing to generate
participant nonces and commitments; participants publish their commitments
without having to maintain state of their (secret) nonce. Then, in the second round,
participants use VPSS1 to re-derive their nonce and commitment, and verify all
other participants’ commitments, ensuring that other participants followed the
protocol correctly. If the verification check holds, participants derive the group
commitment as the aggregation of all participants’ individual commitments, and
generate a signature share as a combination of their nonce, challenge, and secret
signing share. The output signature is the aggregated group commitment and an
aggregation of all participants’ signature shares, and can be verified using the
single-party Schnorr verification algorithm.,

We prove the unforgeability of Arctic assuming the hardness of the discrete
logarithm problem in the random oracle model, assuming µ ≥ 2t−1, the adversary
corrupts at most t− 1 players, and

(
n−1
t−1

)
= poly(n). We describe in Section 1.2

why requiring honest majority assumptions can be practical for some real-world
deployments of threshold signatures, at the benefit of improved simplicity and
performance.

Performance Analysis of Arctic. To estimate the practicality of Arctic for
various choices of n, t, and µ, we implement the scheme and provide concrete
benchmarks.

5

Arctic is highly efficient for moderately sized groups, and so is a good choice
for such settings. As we show in greater detail in Section 6, for a group where
2t− 1 ≤ µ ≤ n ≤ 20, Arctic signing operations require less than 100 milliseconds
of computation for each signer, and for n ≤ 10, less than 1 millisecond. Signing
however increases in cost relative to the corruption threshold; for signing sets
of size n = 25, t = 11, the computational overhead for each signer on a single
core requires one second. However, Arctic is highly parallelizable, showing almost
perfect linear speedups for up to 32 cores for that size of signing set.

For comparison, MuSig-DN requires about 1 second in computational overhead
per signer [46], regardless of the size of the signing set. As such, Arctic is a
practical choice for moderately sized groups of n ≤ 25, whereas MuSig-DN or
GKMN21 [25] may be good choices as the set of signers grows large, depending
on the parallelization of each scheme.

Our Contributions. In summary, the contributions of our work are as follows:

– We formalize the definition of a Verifiable Pseudorandom Secret Sharing
(VPSS) scheme, and give game-based security notions.

– We define a concrete VPSS scheme that we call VPSS1, which extends the
pseudorandom scheme by Cramer et al. [15] to allow for public verifiability,
assuming an honest majority of participants.

– We then present Arctic, a deterministic and stateless two-round threshold
Schnorr signature scheme. Arctic uses VPSS1 as a building block to generate
participant nonces and commitments, and verify that participants performed
this action correctly.

– We prove that Arctic is secure under the discrete logarithm problem in
the random oracle model, assuming VPSS1 is a secure VPSS, the adversary
corrupts fewer than t parties, at least µ ≥ 2t− 1 parties participate in the
signing protocol, and

(
n−1
t−1

)
= poly(n).

– We provide performance benchmarks for Arctic for different sizes of sign-
ing sets, and show that parallelization enables a linear speedup in signer
computation.

1.2 Observations of Honest Majority Assumptions in Practice

While honest minority assumptions may be desirable for some real-world applica-
tions, we observe that honest majority assumptions may be an acceptable tradeoff
for other applications in exchange for statelessness, improved performance, and
protocol simplicity.

For applications that can easily support additional signers, moving from an
honest minority setting to honest majority can be relatively straightforward. For
example, an application that currently uses a (t = 2, µ = 2, n = 3) configuration
can instead move to a (t = 2, µ = 3, n = 4) configuration.

In settings that require liveness, honest majority requirements are already
assumed, to ensure usability of the shared secret key even when corrupt players
refuse to participate. For example, applications such as cryptocurrency wallets

6

often implicitly require honest majority assumptions, to ensure that corrupt
players cannot prevent use of funds by simply refusing to participate in signing
operations.

Finally, some applications may see the requirement for additional signers as
an acceptable tradeoff to mitigate the security risk of protocol complexity, as
protocol complexity increases the risk of exploitable implementation errors [42].

2 Related Work

Randomized (Non-Deterministic) Threshold Schnorr Signatures. We review only
threshold Schnorr signatures in the literature that are secure in a concurrent
setting and therefore demonstrated to be secure against ROS attacks [5, 21,53].

Stinson and Strobl [55] present a five-round threshold Schnorr signature that
uses a robust DKG [29] for generating its nonce. However, the protocol assumes
all participants choose their inputs in a randomized manner.

FROST [14,36] is a randomized two-round threshold Schnorr signature that
is secure even when the first round is preprocessed; i.e, it is performed in a
batched manner resulting in only a single online signing round. FROST is
secure assuming the One-More Discrete Logarithm (OMDL) assumption in the
Random Oracle Model (ROM) [1]. Variants of FROST have been presented to
improve its computational and bandwidth efficiency, including FROST2 [1] and
FROST3 [13,51]. Wong et al. [56] propose a (randomized) extension of FROST
to derive nonces by hashing randomness with additional deterministic factors.
However, FROST and these variants rely on participants selecting their nonces
at random.

Thee-round randomized threshold Schnorr signatures have likewise been pro-
posed. Lindell [40] presents a three-round threshold Schnorr signature scheme
that relies on Fischlin zero-knowledge proofs [23] to demonstrate its simulatability
with respect to Schnorr under aborts. Sparkle [16] is a three-round threshold
Schnorr signature that is secure assuming the Discrete Logarithm (DL) assump-
tion in the ROM. Sparkle does not rely on heavyweight proofs of knowledge, and
instead demonstrates unforgeability via a game-based definition. Makriyannis [41]
similarly presents two separate three-round threshold Schnorr signatures, which
achieve a similar notion of security as to Sparkle. However, each scheme likewise
relies upon randomized nonces.

Deterministic Threshold Signatures. The BLS signature scheme [7] is determinis-
tic, because the signature is of the form z ← H(m)sk. Likewise, threshold BLS
signatures are similarly deterministic [6]. However, such schemes are often not
viable in a practical setting that requires backwards compatibility with Schnorr
signature verification, or due to the requirement of pairings.

Deterministic threshold Schnorr signatures have been described in the lit-
erature, but rely on heavyweight zero-knowledge proofs to demonstrate that
each participant followed the protocol correctly. The challenge of deterministic

7

threshold Schnorr signatures is that of verifiability, because if even one partic-
ipant deviates from the protocol and chooses its nonce randomly, a complete
key-recovery attack is possible.

Nick et al. [46] define a threshold Schnorr n-of-n multisignature that uses
SNARKs to demonstrate in zero-knowledge that a participant generated its
nonce using a PRF correctly with respect to a pre-established keypair. However,
the authors report the computational overhead of at least 943ms for a single
execution, independent of the number of signers, due to the overhead of proving
the PRF was evaluated correctly in zero-knowledge. In particular, to instantiate
the PRF, a non-algebraic cryptographic hash function H : {0, 1} → G must
be used, along with a regular function f : G → Zq. The complete PRF Fsk is
defined by Fsk(x) = f(sk ·H(x)), where sk is a PRF key. Then, signers generate
a Bulletproof [10] to prove in zero-knowledge that the nonce was derived with
respect to F , sk, and some input H(x).

Bronte et al. [8] define an MPC protocol to partition the functionality of
EdDSA, which itself is deterministic. However, their MPC protocol is randomized
and requires multiple rounds of interaction, and therefore is stateful.

Garillot et al. [25] similarly rely on parties sampling and committing to a PRF
key at the time of key generation, but instead make use of the Zero-Knowledge
from Garbled Circuits (ZKGC) paradigm [34] to demonstrate that the PRF
was derived correctly. The specific function that is garbled is C(x) = ϕ(F (x)),
where F is a boolean circuit such as AES, and ϕ is standard exponentiation (or
curve multiplication). The authors give efficiency estimates for a 256-bit curve
and using SHA-512 as the PRF F ; the performance overhead is dominated by
performing 132, 000 AES invocations and 256 additions in Zq per proof generated
and verified. For a signing invocation involving t parties, each party must then
perform 256t field operations and 132, 000t AES invocations, accounting for each
proof a signer generates and the t− 1 proof verifications for all other signers.

Kondi, Orlandi, and Roy [39] take a different approach, and define a two-round
stateless and deterministic two-party Schnorr signature scheme using pseudo-
random correlation functions (PCFs) [9] as a building block. In particular, their
scheme employs a Paillier-based PRF [47], but additionally define a verification
mechanism to ensure that parties honestly followed the protocol. However, their
scheme is restricted to the two-party setting, and as written, cannot be extended
to the general (t, n) threshold setting. In particular, the PCF used as a building
block by their scheme assumes only two parties. Extending their scheme to any
(t, n) setting requires designing a new n-party PCF [38].

Honest Majority Threshold Signatures. Honest majority threshold schemes have
been proposed in the literature as a means to achieve properties that are either
impossible, or require higher performance overhead, in the honest minority setting.
Notably, honest majority schemes have been demonstrated to achieve robustness
or to circumvent requiring the use of heavyweight zero-knowledge proofs [11].

Gennaro et al. [27] use error correcting codes in the honest majority setting
to achieve a robust threshold DSS scheme. Similarly, Ruffing et al. [51] present a

8

wrapper to the FROST threshold signature scheme to achieve robustness, in the
honest majority setting.

In the randomized threshold ECDSA setting, Damg̊ard et al. [18], Doerner
et al. [20], and Delskov [17] show how the pseudorandom secret sharing scheme
by Cramer et al. [15] can be employed as a sub-protocol for improved efficiency.
However, our work targets the setting of deterministic threshold Schnorr signa-
tures.

Distributed Randomness. Galindo et al. [24] give a formalization of distributed
VRFs and their security notions. While our notions for a Verifiable Pseudorandom
Secret Sharing (VPSS) scheme are similar, our definition for a VPSS does not
require that players’ outputs are accompanied by a zero-knowledge proof that
the protocol was performed correctly. Instead, the VPSS verification function
collectively verifies all parties’ outputs.

Cascudo and David [12] define an honest-majority random beacon with
optimized verification techniques under the decisional Diffie-Hellman (DDH)
assumption, improving the cost of verification from O(n · t) exponentiations to
O(n). However, their PVSS verifies the consistency of n shares with respect to
the committed secret, but does not verify that the resulting polynomial is of
degree t − 1, and so their efficiency improvements cannot be employed in the
context of VPSS1.

Pseudorandom Secret Sharing. Our VPSS construction VPSS1 builds on the
pseudorandom secret sharing scheme by Cramer et al. [15]. Note that while
Cramer et al. additionally define a Non-Interactive Verifiable Secret-Sharing
(NIVSS) variant, their construction assumes that players output shares in the
clear, and requires an honest supermajority so that the secret can be recovered.
In our case, players verify the correctness of their shares with respect to other
players’ public commitments, and requires only honest majority (as players simply
need to determine if any other party deviated from the protocol).

While we are the first to do so in a threshold Schnorr signature setting,
pseudorandom secret sharing has been used as a building block in other other
threshold settings. For example, Jarecki, Krawczyk, and Resch [33] define a
threshold Oblivious PRF which likewise builds upon pseudorandom secret sharing.

Concurrent Work. Concurrently to this work, Katz [35] gives several distributed
key generation (DKG) protocols, one of which likewise builds upon the pseudo-
random secret sharing scheme by Cramer, Damg̊ard, and Ishai [15]. However,
our work shows how this technique can be securely employed in the context of
threshold Schnorr signatures.

3 Preliminaries

3.1 General Notation

Let λ ∈ N be a security parameter. We denote the assignment of an element y to
the value x as y ← x, and sampling an element from some set S uniformly at

9

random as x←$ S. For a randomized algorithm A, we write x←$ A() to indicate
the random variable x that is output from the execution of A.

We use [n] to represent the set {1, . . . , n}. For a set S, we denote
(
S
t

)
to mean

the set that consists of all size-t subsets of S.

Groups and Group Generation. Let G be a cyclic group of prime order
q, and Zq be the field of integers modulo q. Let g be a generator of G, and let
IG ∈ G be the identity element of G.

We use GroupGen(1λ) to denote a polynomial-time algorithm that takes as
input a security parameter λ and outputs a group description (G, q, g).

Polynomial Interpolation. A polynomial of degree t− 1 over a field F can be
interpolated by t (or more) points. Let η be the list of t distinct indices η ⊆ [n]
corresponding to the x-coordinates xi ∈ F, i ∈ η. Then the Li(x) (for i ∈ η) are
the Lagrange polynomials defined by η, of the form Li(x) =

∏
j∈η;j ̸=i

x−xj

xi−xj
Later

in this work, we denote Li(0) as λi.
Given a set of t points (xi, f(xi)), any point f(xℓ) on the degree t − 1

polynomial f can be determined by Lagrange interpolation: f(xℓ) =
∑

j∈η f(xj) ·
Lj(xℓ).

3.2 Definitions and Assumptions

Assumption 1 (Discrete Logarithm Assumption (DL)) The discrete log-
arithm assumption holds for GroupGen if for all PPT adversaries A, AdvdlA(λ) is
negligible, where

AdvdlA(λ) = Pr


(G, q, g)← GroupGen(1λ)

X ←$ G

x′ ←$ A((G, q, g), X)

: X
?
= gx

′


Schnorr Signatures. A Schnorr signature is a Sigma protocol zero-knowledge
proof of knowledge of the discrete logarithm of the public key, made non-
interactive and bound to the message m by the Fiat-Shamir transform [22].
Schnorr signatures are secure under the discrete logarithm assumption in the
random oracle model [49].

Definition 1 (Schnorr Signatures [52]). The Schnorr signature scheme is
defined as follows:

- Schnorr.Setup(1λ) → par: On input the security parameter, run (G, q, g) ←
GroupGen(1λ) and select a hash function H : {0, 1}∗ → Zp. Output public
parameters par = ((G, q, g),H) (which are given implicitly as input to all
other algorithms).

10

- Schnorr.KeyGen() → (pk, sk): Sample a secret key sk ←$ Zq and compute a
public key pk← gsk. Output (pk, sk).

- Schnorr.Sign(sk,m)→ σ: On input secret key sk and message m, the signer
samples a nonce r ←$ Zq and computes a nonce commitment R ← gr. The
signer then computes the challenge c ← H(R, pk,m) and the response z ←
r + cx. Output the signature σ = (R, z).

- Schnorr.Verify(pk,m, σ) → 0/1 : On input the public key pk, a message m,
and a purported signature σ = (R, z), the verifier computes c← H(R, pk,m)
and accepts if gz = R · pkc.

Shamir secret sharing. The (t, n) Shamir secret sharing scheme [54] allows a
dealer to partition a secret into n shares, t of which are required to recover the
secret. Shamir secret sharing is information-theoretically secure.

Definition 2 (Shamir secret sharing [54]). Shamir secret sharing Shamir
is a threshold secret sharing scheme that consists of the following algorithms:

– Shamir.Share(s, n, t)→ {(1, ϕ1), . . . , (n, ϕn)}: On input a secret s, the number
of participants n, and a threshold t, perform the following. First, define a
polynomial f(x) = s+a1+a2x

2+ · · ·+at−1x
t−1 by sampling t−1 coefficients

at random (a1, . . . , at−1)←$ Zq. Then, set each participant’s share ϕi, i ∈ [n],
to be the evaluation of f(i): ϕi ← s+

∑
j∈[t−1] aji

j. Output {(i, ϕi)}i∈[n].

– Shamir.Recover(t, {(i, ϕi)}i∈η)→ ⊥/sk: On input a threshold t and a set of
shares {(i, ϕi)}i∈η, output ⊥ if η ̸⊆ [n] or if |η| < t. Otherwise, compute

L(x) =
∑
i∈η

wiLi(x) =
∑
i∈η

wi

∏
j∈η,j ̸=i

x− j

i− j
. If deg(Li) > t − 1, return ⊥.

Otherwise, return s = L(0) =
∑
i∈η

wiLi(0) =
∑
i∈η

wi

∏
j∈η,j ̸=i

j

j − i
.

3.3 General Forking Lemma

We next review the general forking lemma by Bellare and Neven [2], which itself
is a formalization of the forking lemma introduced by Pointcheval and Stern [48].
We show the general forking algorithm in Figure 1.

Lemma 1 (General Forking Lemma [2]). Let H be a finite set and r ≥ 1
be an integer. Let IG be a randomized instance generator and let X ←$ IG be
an instance. Let C be a randomized algorithm that takes as input X, quantities
h1, . . . , hr ∈ H, and a random tape ρ. Let accept(C) be the probability that C
outputs an accepting answer, namely

accept(C) := Pr

j ̸= ⊥ :
X ←$ IG, h1, . . . , hr ←$ H

(j, aux)←$ C
(
X, (h1, . . . , hr); ρ

)
 .

11

Algorithm ForkC(X) ForkCm(X)

Sample coins ρ for C at random.

h1, . . . , hr ←$ H

(j, aux)←$ C
(
X, (h1, . . . , hr); ρ

)
return ⊥ if j = ⊥
h′
j , . . . , h

′
r ←$ H

(j′, aux′)←$ C
(
X, (h1, . . . , hj−1, h

′
j , . . . , h

′
r); ρ

)
return ⊥ if j′ = ⊥
return ⊥ if j ̸= j′

// Fail if any outputs sampled from H collide
if (h1, . . . , hr, h

′
j , . . . , h

′
r) contains a repeated element

return ⊥
return (hj , h

′
j , aux, aux

′)

Fig. 1: The general forking algorithm ForkC(X) and the modified general forking
algorithm ForkCm(X), defined with respect to an algorithm C and instance X. The
difference between the general forking algorithm and modified variant is shown in
a box, for emphasis. In summary, the modified general forking algorithm aborts
if any of the (h1, . . . , hr, h

′
j , . . . , h

′
r) collide.

Let ForkC(X) be the general forking algorithm defined in Figure 1 and let

accept(ForkC) := Pr
[
α ̸= ⊥ : X ←$ IG, α←$ ForkC(X)

]
.

Then, accept(ForkC) is bounded by

accept(ForkC) ≥ accept(C) ·
(
accept(C)

r
− 1

|H|

)
.

A modified forking lemma. We will employ a slight modification of the forking
experiment, and give a corollary on how it impacts the accepting probability of
its output.

The modification to the forking experiment is natural; intuitively, we add
an additional abort condition if any of the values h1, . . . , hr, h

′
j , . . . , h

′
r collide.

Because there are at most 2r values, and they are all sampled uniformly at
random from the set H, the probability that any of them collide is at most
2r2/ |H|. By considering this case here, we can be sure that such collisions are
considered in our proof of security for Arctic.

12

Corollary 1. Let ForkCm be the forking experiment in Figure 1. Then using the
notation of Lemma 1 we have

accept(ForkCm) ≥ accept(ForkC)− Pr[BadHashEvent]

≥ accept(ForkC)− 2r2/|H|
(1)

Where BadHashEvent denotes the event that ForkCm returns ⊥ due to the boxed
lines in Figure 1.

3.4 Deterministic Threshold Signature Schemes

We begin with the definition of a deterministic threshold signature scheme, and
then define the notion of unforgeability. We build upon standard definitions and
notions of unforgeability for threshold signatures in the literature [16,26,28,30].

Intuitively, our definition for deterministic threshold signature schemes is
identical to that of randomized threshold signature schemes, with the exception
that in the deterministic setting, the signing algorithms are deterministic and
the signer does not maintain state between rounds. Furthermore, each signing
round in the deterministic setting is given as input the message m, coalition of
signers C, and secret signing key share ski.

Definition 3 (Deterministic Threshold Signatures). A deterministic
threshold signature scheme DT with an interactive signing protocol consisting
of r rounds is a tuple of PPT algorithms TS = (Setup,KeyGen, (Sign1, . . . ,Signr),
Combine,Verify), defined as follows:

– Setup(1λ)→ par: Accepts as input a security parameter λ and outputs public
parameters par, which are then implicitly given as input to all other algorithms.

– KeyGen(n, t, µ)→ (pk, {pki, ski}i∈[n]): A probabilistic algorithm that takes as
input the total number of possible signers n, the corruption threshold t, and
the minimum number of participating signers µ. Outputs the public key pk
representing the set of n signers, the set {pki, ski}i∈[n] of public and secret
key shares for each signer.

– (Sign1, . . . ,Signr) → {ρ
(k)
1 , . . . ρ

(k)
r }k∈C : A set of deterministic algorithms

where each algorithm represents a single stage in an interactive signing
protocol performed by signing party k ∈ [n] in a signing set C ⊆ [n], |C| ≥ µ
with respect to a message m, defined as follows:

ρ
(k)
1 ← Sign1(k, skk,m, C), . . . , ρ

(k)
r ← Signr(k, skk,m, C, {ρ(i)r−1}i∈C)

where ρ
(k)
1 , . . . , ρ

(k)
r are protocol messages produced by party k ∈ C.

– Combine(pk,m, C, {(ρ(i)1 , . . . , ρ
(i)
r)}i∈C)→ σ: A deterministic algorithm that

takes as input the public key pk, the message m, the set of signers C, and
the set of protocol messages sent by each party during the Sign1, . . . ,Signr
signing stages, and outputs a joint signature σ.

– Verify(pk,m, σ) → 0/1: A deterministic algorithm that takes as input the
public key pk, a message m, and signature σ and outputs 1 to indicate accept
if the signature verifies; otherwise, it outputs 0 to indicate reject.

13

Remark 1 (Distributed key generation). Our definition assumes a centralized
key generation algorithm KeyGen to generate the public key pk and public key
shares {pki, ski}i∈[n]. However, our scheme and proofs can be adapted to use a
fully decentralized distributed key generation protocol (DKG).

Remark 2 (Deferring the Choice of Coalition to Later Rounds). Our definition
assumes that the coalition of signers C is provided in the first round of signing
Sign1. However, some constructions (as is the case with Arctic) may defer the
choice of C to later rounds.

Correctness. A deterministic threshold signature scheme DT is correct if for all
security parameters λ, all 1 ≤ t ≤ µ ≤ n, all C ⊆ [n] such that µ ≤ |C| ≤ n, and
for all messages m ∈ {0, 1}∗, the following relation holds:

DT.Verify(pk,m, σ) = 1, for

(pk, {pki, ski}i∈[n])←$ DT.KeyGen(n, t, µ), where

ρ
(k)
1 ← DT.Sign1(k, skk,m, C), . . . , ρ(k)r ← DT.Signr(k, skk,m, C, {ρ(i)r−1}i∈C), and

σ ← DT.Combine(pk,m, C, {ρ(i)1 , . . . , ρ(i)r }i∈C)

Unforgeability We present a game-based definition of unforgeability for a
deterministic threshold signature scheme in Figure 2. This notion of unforgeability
is analogous to the standard notion of chosen message attack (EUF-CMA) for
standard signature schemes [31]. We present the adversary as a static adversary,
which is allowed to corrupt at most t− 1 signers.

In the static unforgeability game for a deterministic threshold signature
scheme, the environment allows the adversary to sample the corrupt parties
corrupt ⊂ [n]. If the set of corrupt parties is smaller than the corruption threshold
t, it derives the set of honest parties honest ⊆ [n] as the remaining parties in [n].
The environment then runs KeyGen to derive the joint public key pk representing
the set of n signers, the set of public key shares {pki}i∈[n], and the secret key
shares {ski}i∈[n]. The adversary is then run on input n, t, µ, par, pk, {pki}i∈[n], and
the corrupt signing key shares {skj}j∈corrupt. The adversary can then query any
honest signers k ∈ honest of its choosing at each step in the signing protocol, and
has full power over choosing the set of signers C and the message m. Additionally,
the adversary may query the signing round oracles in arbitrary order. However,
unlike in the randomized setting, the environment for a deterministic threshold
signature scheme does not maintain any session identifiers, or state about ongoing
signing sessions. The adversary wins if it can produce a valid forgery σ∗ with
respect to the joint public key pk on a message m∗ that has not been queried to
OSignr (i.e., in the final round of signing). Importantly, this definition allows the
adversary to be rushing, meaning it can wait to produce its outputs after having
seen the honest outputs first. The adversary may also be concurrent, meaning
it can open simultaneous signing sessions at once, or choose not to complete a
signing session.

14

ExpufDT,A(λ, n, t, µ)

par← DT.Setup(1λ)

Q← ∅ // set of queried messages

(corrupt, stA)←$ A(par, n, t, µ)
if |corrupt| ≥ t

return ⊥
honest← [n] \ corrupt
(pk, {pki, ski}

n
i=1)←$ DT.KeyGen(n, t, µ)

in← (pk, {pki}
n
i=1, {skj}j∈corrupt, stA)

(m∗, σ∗)←$ AOSigni,i∈[r]

(in)

if m∗ /∈ Q ∧ DT.Verify(pk,m∗, σ∗) = 1

return 1

return 0

OSign1(k,m, C)

// k denotes the participant identifier

ρ
(k)
1 ← DT.Sign1(k, skk,m, C)

return ρ
(k)
1

...

OSignj (k,m, C, {ρ(i)j−1}i∈C)

// for j ∈ {2, . . . , r − 1}

ρ
(k)
j ← DT.Signi(k, skk,m, C, {ρ(i)j−1}i∈C)

return ρ
(k)
j

...

OSignr (k,m, C, {ρ(i)r−1}i∈C)

Q← Q ∪ {m}

ρ(k)r ← DT.Signr(k, skk,m, C, {ρ(i)r−1}i∈C)

return ρ(k)r

Fig. 2: Unforgeability game for a deterministic threshold signature scheme DT
with a r-round signing protocol. The game assumes a static adversary that picks
the players it corrupts at the beginning of the game. The public parameters par

are implicitly given as input to all algorithms, and ρ
(k)
1 , . . . , ρ

(k)
r represent protocol

messages sent by participant k throughout the interactive signing protocol.

Definition 4 (Unforgeability). Let the advantage of a static adversary A
playing the unforgeability game against a deterministic threshold signature scheme
DT as defined in Figure 2 be as follows:

AdvufDT,A(λ, n, t, µ) =
∣∣Pr[ExpufDT,A(λ, n, t, µ) = 1]

∣∣
A deterministic threshold signature scheme DT is unforgeable if for all PPT
adversaries A, AdvufDT,A(λ, n, t, µ) is negligible in λ, for all n, t, µ ∈ N, such that
t ≤ n.

4 Verifiable Pseudorandom Secret Sharing

We now introduce an extension to pseudorandom secret sharing that we call a
Verifiable Pseodurandom Secret Sharing (VPSS) scheme. We begin by motivating
the need for a VPSS, and then formally define VPSS and its security properties.
Finally, in Section 4.3, we give a concrete VPSS construction, VPSS1, that we
later use as a building block for Arctic.

15

4.1 Motivation

A verifiable random function (VRF) [43] is a keyed PRF, such that the PRF can
be evaluated using only knowledge of a secret key, but is publicly verifiable given
a public key. In particular, in addition to outputting the evaluation of the VRF,
it also outputs a zero-knowledge proof that the VRF was evaluated correctly.
A distributed VRF [19,24,44] allows the evaluation algorithm to be partitioned
among a set of participants, all of whom are equally trusted.

However, the use case of generating deterministic nonces for threshold Schnorr
signatures presents a slightly different challenge. Instead of directly verifying
that the nonce ri was correctly generated, we instead need to verify correctness
in zero-knowledge, with respect to a commitment Ri = gri . One approach in
the literature is to employ non-algebraic pseudorandom functions to generate
the nonce, and then prove in zero-knowledge the correctness of the correspond-
ing commitment [25,46]. Unfortunately, generating such zero-knowledge proofs
requires higher computational and complexity overhead.

We instead take a different approach towards verifying that a distributed
pseudorandom function was correctly performed by a set of parties. Instead
of each participant outputting a zero-knowledge proof that they individually
performed the action correctly, we observe that the correctness of the evaluation
can instead be collectively publicly verified, assuming some threshold of honest
participants. Such an observation leads naturally to employing a pseudorandom
secret sharing scheme [15], which is categorized by all parties holding a set of
secret key shares, and individually and non-interactively being able to generate
secret shares of additional pseudorandom values. We show that pseudorandom
secret sharing schemes have a natural extension to the publicly verifiability setting.
Finally, we give a concrete and efficient VPSS scheme, where all participants
can publish commitments to their generated shares, and perform polynomial
interpolation over elements in the public domain to ensure correctness.

We next build upon these observations by formalizing the notion of a verifiable
pseudorandom secret sharing scheme.

4.2 VPSS Definition and Notions of Security

We now present an extension on pseudorandom secret sharing that we call a
Verifiable Pseudorandom Secret Sharing (VPSS) scheme. In particular, a VPSS
defines an additional verify algorithm to ensure that the pseudorandom function
was performed correctly by collectively verifying outputs by all participants.

Definition 5. A Verifiable Pseudorandom Secret Sharing scheme is the
tuple of algorithms VPSS = (Setup,KeyGen,Gen,Verify,Agg,Recover), such that:

– Setup(1λ): Accepts as input the security parameter λ, and outputs public
parameters par, where par is given as implicit input to all other algorithms.

– KeyGen(n, t, µ) → ⊥/(sk1, . . . , skn): A probabilistic algorithm that accepts
as input the total number of participants n, a corruption threshold t, and

16

the minimum number of parties µ required to participate in Gen. On failure,
output ⊥, otherwise, output n secret keys, one for each of the n participants.

– Gen(k, skk, w) → (dk, Dk): A deterministic algorithm that accepts as input
a participant identifier k, the secret key for that participant skk, and some
input w. Generates the pseudorandom secret share dk ∈ P from some domain
P, using skk as the random seed and w as the corresponding input. Then,
generates its public commitment Dk ∈ O to dk from some domain O. Outputs
(dk, Dk).

– Verify(t, µ, C, {Dj}j∈C)→ {0, 1}: A deterministic algorithm that accepts as
input the corruption threshold t, the minimum number of participants µ, a
coalition of participants C such that |C| ≥ µ, and a set of commitments to
pseudorandom secret shares (Dj)j∈C for that coalition. Outputs 1 to indicate
that the secret sharing was correctly performed, otherwise, output 0.

– Agg(t, µ, C, {Dj}j∈C) → D: A deterministic algorithm that accepts as in-
put the corruption threshold t, the minimum number of participants µ, a
coalition of participants C such that |C| ≥ µ, and the set of commitments
to pseudorandom secret shares. Outputs the commitment to the aggregated
pseudorandom secret D.

– Recover(t, µ, C, {dj}j∈C)→ ⊥/(d,D): A deterministic algorithm that accepts
a corruption threshold t, the minimum number of participants µ, a coalition
C ⊆ [n], |C| ≥ µ, and a set of shares {dj}j∈C . It outputs ⊥ if C ̸⊆ [n],
|C| < µ, or if the shares are inconsistent. Otherwise, it recovers d using the
set of shares, derives the corresponding commitment D, and outputs (d,D).

Correctness. A VPSS is correct if for all λ, possible inputs w and choices of
t, µ, n ∈ N where t ≤ µ ≤ n, when par ← VPSS.Setup(1λ) and (sk1, . . . , skn) ←

$

VPSS.KeyGen(n, t, µ), there exists d ∈ P, D ∈ O such that Equation 2 holds:

for all i ∈ [n] and for all Cℓ ⊆ [n], |Cℓ| ≥ µ, when

VPSS.Gen(i, ski, w)→ (di, Di), then

VPSS.Verify(t, µ, Cℓ, {Dj}j∈C) = 1, and

VPSS.Recover(t, µ, Cℓ, (dj)j∈C)→ (d,D), and

VPSS.Agg(t, µ, Cℓ, (Dj)j∈C)→ D

(2)

Security. Similarly to verifiable random functions [19,24,43,44], we say that a
VPSS is secure if it is unique, verifiable, and pseudorandom.

Uniqueness. Intuitively, a VPSS is unique if it produces exactly one commitment
to a (pseudorandom) value for each input w, regardless of the choice of coali-
tion. More specifically, picking different coalitions should always result in the
same commitment D, when the input w remains the same. We show the VPSS
uniqueness experiment in Figure 3.

17

ExpuqVPSS,A(λ, n, t, µ)

par← VPSS.Setup(1λ)

(corrupt, stA)←$ A(par, n, t, µ)
return ⊥ if |corrupt| ≥ t

honest← [n] \ corrupt
(sk1, . . . , skn)←

$ VPSS.KeyGen(n, t, µ)

(w, out)←$ AOGen

((skj)j∈corrupt, stA)

(C, (Di)i∈C∩corrupt), (C
′, (D′

i)i∈C′∩corrupt)← out

(dj , Dj)← VPSS.Gen(j, skj , w), j ∈ honest

S1 ← (Di)i∈C∩corrupt ∪ (Di)i∈C∩honest

S2 ← (D′
i)i∈C′∩corrupt ∪ (Di)i∈C′∩honest

return 0 if VPSS.Verify(t, µ, C, S1) ̸= 1

return 0 if VPSS.Verify(t, µ, C′, S2) ̸= 1

D ← VPSS.Agg(t, µ, C, S1)

D′ ← VPSS.Agg(t, µ, C′, S2)

if D ̸= D′

return 1

return 0

OGen(k,wi)

// k denotes the participant identifier

(dk, Dk)← VPSS.Gen(k, skk, wi)

return (dk, Dk)

Fig. 3: Uniqueness game for a VPSS.

In the uniqueness experiment, the adversary is allowed to query honest
participants for shares and commitments on inputs of its choosing. The adversary
then outputs the evaluation input w, two coalitions C,C ′, and two sets of
commitments (Di)i∈C∩corrupt, (D

′
i)i∈C′∩corrupt.

The environment then derives the honest players’ shares and commitments
on w, producing (dj , Dj)j∈honest. After deriving the sets S1 ← (Di)i∈C∩corrupt ∪
(Di)i∈C∩honest and S2 ← (D′

i)i∈C′∩corrupt ∪ (Di)i∈C′∩honest, the adversary loses if
the verification algorithm outputs 0 on either set. If both sets verify, the adversary
wins if the corresponding commitments for each set are not equal.

We define uniqueness for a VPSS more formally in Definition 6.

Definition 6. Let the advantage of an adversary A playing the uniqueness game
as defined in Figure 3 be as follows:

AdvuqVPSS,A(λ, n, t, µ) =
∣∣Pr[ExpuqVPSS,A(λ, n, t, µ) = 1]

∣∣
A VPSS VPSS is unique if for all PPT adversaries A, AdvunqVPSS,A is a

negligible function of λ, for n, t, µ ∈ N, t ≤ µ ≤ n.

18

ExpverfVPSS,A(λ, n, t, µ)

par← VPSS.Setup(1λ)

(corrupt, stA)←$ A(par, n, t, µ)
return ⊥ if |corrupt| ≥ t

honest← [n] \ corrupt
(sk1, . . . , skn)←

$ VPSS.KeyGen(n, t, µ)

(w,C, (Dj)j∈C∩corrupt)←$ AOGen

((skj)j∈corrupt, stA)

for j ∈ C do

(d′j , D
′
j)← VPSS.Gen(j, skj , w)

if (Dj)j∈C∩corrupt = (D′
j)j∈C∩corrupt

return 0

// A must deviate from the protocol to win

S ← (Dk)k∈C∩corrupt ∪ (D′
j)j∈C∩honest

if VPSS.Verify(t, µ, C, S) = 1

return 1

return 0

OGen(k,wi)

// k denotes the participant id

(dk, Dk)← VPSS.Gen(k, skk, wi)

return (dk, Dk)

Fig. 4: Verifiability game for a VPSS.

Verifiability. Intuitively, a VPSS is verifiable if given a set of commitments to
shares from a coalition of participants, the verify algorithm will detect if some
subset of players deviated from the protocol. We show the VPSS verifiability
experiment in Figure 4.

In the experiment, the adversary is allowed to query honest participants for
shares and commitments on inputs of its choosing. The adversary then outputs
a coalition C, a VPSS input w, and a set of commitments (Di)i∈C∩corrupt. The
environment then follows the protocol, deriving both the corrupt and honest
players’ commitments on w, and producing (D′

j)j∈C . The adversary loses if
its output is identical to the honestly derived commitments for the corrupted
players. Then, the environment checks if the set of commitments (Di)i∈C∩corrupt∪
(D′

j)j∈C∩honest are valid with respect to C and w. If so, the adversary wins,
otherwise, it loses.

We define verifiability for a VPSS more formally in Definition 7.

Definition 7. Let the advantage of an adversary A playing the verifiability game
as defined in Figure 4 be as follows:

AdvverfVPSS,A(λ, n, t, µ) =
∣∣Pr[ExpverfVPSS,A(λ, n, t, µ) = 1]

∣∣
A VPSS VPSS is verifiable if for all PPT adversaries A, AdvverfVPSS,A is a

negligible function of λ, for n, t, µ ∈ N, t ≤ µ ≤ n.

19

ExppsdrVPSS,A(λ, n, t, µ)

b←$ {0, 1}
z ←$ {0, 1}
Q← ∅

par← VPSS.Setup(1λ)

(corrupt, stA)←$ A(par, n, t, µ)
return ⊥ if |corrupt| ≥ t

honest← [n] \ corrupt
(sk1, . . . , skn)←

$ VPSS.KeyGen(n, t, µ)

out←$ AOGen

((skj)j∈corrupt, stA)

(b′, w∗, C∗, {Dj}j∈corrupt)← out

if b = 1

return z if Q[w∗] = ⊥
(D, {Di}i∈honest)← Q[w∗]

if VPSS.Verify(t, µ, C∗, {Dk}k∈C∗) ̸= 1

return z

if VPSS.Agg(t, µ, C∗, {Dk}k∈C∗) ̸= D

return 1

return 1 if b
?
= b′

return 0

OGen(k,w)

// k denotes the participant identifier

return ⊥ if k ̸∈ honest

if b = 0

(dk, Dk)← VPSS.Gen(k, skk, w)

return (dk, Dk)

// b = 1 case

if Q[w] ̸= ⊥
(D, {(di, Di)}i∈honest)← Q[w]

else

d′ ←$ P
in← (w, d′, corrupt, n, (skj)j∈corrupt)

(D, {(di, Di)}i∈honest)← SimGen(in)

Q[w] = (D, {(di, Di)}i∈honest)

// SimGen is a simulating algorithm

// defined by the VPSS construction.

return (dk, Dk)

Fig. 5: Pseudorandomness game for a VPSS.

Pseudorandom. Intuitively, a VPSS is pseudorandom if the adversary has neg-
ligible advantage distinguishing between a real VPSS output from one that is
randomly sampled. We show the VPSS pseudorandomness experiment in Figure 5.

In the pseudorandomness experiment, the environment begins by picking
a random bit b ←$ {0, 1}. It then performs key generation, and initializes the
adversary with the public parameters and the corrupted parties’ secret key shares.

The adversary is allowed to query OGen on honest participants for shares and
commitments on inputs of the adversary’s choosing. If b = 0, the environment
responds by following the VPSS protocol. If b = 1, the environment first checks
to see if it has responded to the query before, replying with the response if so.
Otherwise, it uses a simulating algorithm SimGen to simulate generating honest
players’ shares and commitments. The details of SimGen depend on the specifics
of the VPSS construction.

The adversary outputs (b′, w∗, C∗, {Dj}j∈corrupt), where b′ is the adversary’s
guess for the value of b, and (w∗, C∗, {Dj}j∈corrupt) corresponds to one of the
sessions the adversary initiated with OGen.

20

If b = 1, the environment checks if (w∗, C∗, {Dj}j∈corrupt) corresponds to an
existing session and is consistent with the honest parties’ commitments, outputting
a random coin if it does not. Otherwise, the environment next checks that the
aggregated commitment VPSS.Agg(t, µ, C∗, {Dk}k∈C∗) is equal to the simulated
commitment D for that session, if the check does not hold, the environment
outputs 1.

Otherwise, the environment checks if the adversary’s guess b′ is equal to b;
outputting 1 if the check holds, otherwise, outputting 0.

We define pseudorandomness for a VPSS more formally in Definition 8.

Definition 8. Let the advantage of an adversary A playing the pseudorandom-
ness game as defined in Figure 5 be as follows:

AdvpsdrVPSS,A(λ, n, t, µ) =
∣∣Pr[ExppsdrVPSS,A(λ, n, t, µ) = 1]− 1/2

∣∣
A VPSS VPSS is pseudorandom if for all PPT adversaries A, AdvpsdrVPSS,A

is a negligible function of λ, for n, t, µ ∈ N, t ≤ µ ≤ n.

4.3 VPSS1, A Concrete Verifiable Pseudorandom Secret Sharing
Scheme

We now define a concrete VPSS that we call VPSS1, that builds upon the
pseudorandom secret sharing scheme as defined by Cramer, Damg̊ard, and
Ishai [15]. However, VPSS1 additionally defines a verify algorithm that is publicly
verifiable (assuming the authenticity of the inputs), as well as an algorithm to
combine participant commitments.

As a reminder, the pseudorandom secret sharing scheme by Cramer, Damg̊ard,
and Ishai [15] itself builds on replicated secret sharing [32]. However, Cramer
et al. define a mechanism to non-interactively convert shares of a replicated
secret sharing scheme to shares of a Shamir-secret-shared value. They then show
how this mechanism can be used as a distributed pseudorandom function; i.e.,
given a replicated secret sharing of a random value, participants can generate
Shamir secret shares of an unbounded number of pseudorandom values, without
interaction.

We extend this pseudorandom secret sharing scheme by Cramer et al. and
additionally define a public verifiability mechanism. More specifically, we define
a Verify function that uses the set of participants’ commitments to ensure all
participants performed the evaluation step in a consistent manner. Such consis-
tency checks have been used in prior literature [4], but our check is performed
over commitments to secret shares, as opposed to verifying the shares directly.
We prove that VPSS1 is secure assuming a cryptographically secure hash func-
tion, when at minimum 2t− 1 parties participate in evaluation and up to t− 1
participants are corrupted (honest majority).

We now define VPSS1 in more detail. We show KeyGen for VPSS1 as a
centralized operation, but this operation can easily be decentralized. VPSS1 is
additionally defined with respect to a hash function H, where H : Zq×{0, 1}∗ → Zq

is a cryptographically secure hash function.

21

– VPSS1.Setup(1
λ): Accepts as input the security parameter λ, outputs public

parameters par = (G, q, g), where (G, q, g) is generated by GroupGen(1λ). par
is given as an implicit input to all other algorithms.

– VPSS1[H].KeyGen(n, t, µ)→ ⊥/(sk1, . . . , skn): On input the total number of
participants n, the corruption threshold t, and minimum number of partic-
ipants µ, the dealer performs replicated secret sharing of a random secret
sk ∈ Zq [15], following the following steps:

1. First, the dealer checks if µ ≥ 2t− 1; if the check fails, output ⊥.

2. Let A be the set such that A =
(
[n]
t−1

)
, and let γ be the size of A; i.e,

γ = |A| =
(

n
t−1

)
.

3. Generate γ secret shares {ϕi}i∈[γ], by sampling ϕi ←$ Zq, i ∈ [γ]. Implic-
itly, the secret sk is such that sk =

∑
i∈γ ϕi.

4. Initialize empty sets sk1 = ∅, . . . , skn = ∅.

5. For each set ai ∈ A, i ∈ [γ] and each participant identifier j ∈ [n] \ ai,
append skj ← skj ∪ {(ai, ϕi)}.

6. Output (sk1, . . . , skn). Each skj is a set of size δ =
(
n−1
t−1

)
, consisting of the

tuples (ai, ϕi). Each ai is itself a set, such that ai ⊂ [n] and |ai| = t− 1,
where if ai ∈ skj , then j ̸∈ ai.

– VPSS1[H].Gen(k, skk, w)→ (dk, Dk): On input participant identifier k ∈ [n],
secret key share skk, and input w ∈ {0, 1}∗, perform the following steps:

1. Parse {(ai, ϕi)}i∈[δ] ← skk.

2. For each set ai, let L
′
ai
(x) be the degree t− 1 polynomial defined by the

set ai, as given in Equation 3:

L′
ai
(x) =

∏
j∈ai

j − x

j
(3)

Note that L′
ai
(j) = 0 for all j ∈ ai and L′

ai
(0) = 1.

3. Obtain the share via Equation 4:

dk ←
∑
i∈[δ]

H(ϕi, w) · L′
ai
(k) (4)

Note that the L′
ai
(k) values can be precomputed by participant k, as

they are independent of w, so this step requires δ evaluations of H and δ
multiplications and additions in Zq.

4. Derive the commitment to dk as Dk ← gdk .

5. Output (dk, Dk).

– VPSS1[H].Verify(t, µ, C, {Dj}j∈C)→ {0, 1}: Perform the following steps:

1. If |C| ̸≥ µ, return 0.

22

2. Otherwise, define B = (B0, B1, . . . , B|C|−1) to be the tuple of |C| com-
mitments to coefficients of a polynomial f defined “in the exponent,”
where each Di, i ∈ C is a commitment to a point on the same polynomial
f . Each Bi can be derived via Equation 5:

Bi =
∏
j∈C

D
Lj,i

j (5)

where Lj,i is the coefficient of the ith term xi of the jth Lagrange poly-
nomial Lj(x) for the coalition C, as described in Section 3.1.

3. Let ℓ = |C| − t. The verifier now checks that all participants followed the
protocol honestly, by checking in the exponent that their shares lie on a
polynomial of degree t− 1. In particular, the verifier ensures that B is a
commitment to a polynomial of degree at most t− 1,3 by checking the
last ℓ entries in B are equal to the identity of G:4

Bt−1+i = IG,∀ i ∈ [ℓ] (6)

4. If the check in Equation 6 holds, output 1, otherwise, output 0.

– VPSS1[H].Agg(t, µ, C, {Dj}j∈C)→ D: Accepts as input the corruption thresh-
old t, minimum participants µ, the coalition C, and set of (verified) com-
mitments {Dj}j∈C). The commitments can be combined as in Equation 7,
where the coefficients λj are determined by the coalition C.

D ←
∏
j∈C

D
λj

j = B0 (7)

Output D.

– VPSS1[H].Recover(t, µ, C, {dj}j∈C) → ⊥/(d,D): Receives as input the cor-
ruption threshold t, the minimum number of participants µ, the coalition C,
and the set of pseudorandom secret shares {dj}j∈C . Performs the following
steps:
1. If |C| < µ, or C ̸⊂ [n], output ⊥.
2. For each dj , j ∈ C, derive Dj ← gDj .

3. If VPSS1.Verify(t, µ, C, {Dj}j∈C) ̸= 1, then output ⊥.
4. Otherwise, the shares can be combined as in Equation 8, where the λj

are determined by the coalition C.

d←
∑
j∈C

dj · λj (8)

5. Derive the commitment to d as D ← gd.

6. Output (d,D).
3 When at least t parties follow the protocol honestly, their shares will completely
define this polynomial.

4 As an optimization, note that B1, . . . , Bt−1 need not be computed.

23

Correctness. By correctness of pseudorandom secret sharing as defined by Cramer
et al. [15], when key generation is honestly performed, the Gen algorithm pro-
duces secret shares di = f(i) that are points on a degree t − 1 Shamir secret
sharing polynomial f(x) =

∑
i∈[γ] H(ϕi, w)L

′
ai
(x). The combined commitment

d =
∑

i∈C diλi for C ⊆ [n], |C| ≥ 2t − 1 is a commitment to a pseudorandom
secret value d = f(0) =

∑
i∈[γ] H(ϕi, w). Agg and Recover simply perform poly-

nomial interpolation of these values with respect to the set of participants, and
so are likewise correct.

Verify is correct because honest parties output commitments Di = gf(i) for
the degree t− 1 polynomial f defined above. Therefore, if all parties are honest,
the coefficients of xt, . . . , x|C|−1 of f(x) will be 0, so the commitments Bt, . . . ,
B|C|−1 to those coefficients will be IG (the identity element of G), and so Verify
will output 1.

Security. VPSS1 is verifiable, unique, and pseudorandom. We give the corre-
sponding proofs in the full version of this work [37, App.B].

5 Arctic, A Deterministic and Stateless Two-Round
Threshold Schnorr Signature Scheme

We now introduce Arctic, an efficient, two-round, deterministic threshold Schnorr
signature scheme for moderately sized groups of participants that does not require
participants to keep state between rounds of the signing protocol. As a building
block, Arctic uses VPSS1 to generate nonces deterministically, and to verify that
all other participants followed the protocol honestly. Arctic is secure assuming
fewer than t participants are corrupted, and at least µ participated in the signing
protocol, where µ ≤ n but µ ≥ 2t− 1.

Remark 3 (Distributed Key Generation). The Arctic construction given in Fig-
ure 6 assumes a centralized key generation procedure; however, using a distributed
key generation (DKG) scheme is equally possible. We discuss one possible DKG
in Section 5.2.

Remark 4 (Requirement of Authenticated Channels). We require that the mes-
sages exchanged between participants in the Arctic construction shown in Figure 6
be sent over authenticated channels; i.e., messages must be authenticated and
verifiable as having come from their purported senders. Otherwise, an adversary
can simply pick contributions that are consistent with a single honest party’s
Ri, which would result in a valid input for VPSS1.Verify. Note that we do not
assume the authenticated channel maintains any session identifiers or state about
messages; Arctic remains secure even if the adversary were to replay old authen-
ticated messages. However, if a participant receives an unauthenticated message,
we require that the participant aborts.

24

Setup(1λ)

1 : (G, q, g)← GroupGen(1λ)

2 : par← ((G, q, g),H1,H2,H3)

3 : return par

4 : // par is given implicitly

5 : // to all other algorithms

KeyGen(n, t, µ)

1 : // Performed by a trusted

2 : // dealer, or DKG

3 : if µ < 2t− 1 or µ > n

4 : return ⊥
5 : // Require ≥ 2t− 1 signers

6 : sk←$ Zq; pk← gsk

7 : {(i, sk(2)i)}ni=1 ←$ Shamir.Share(sk, n, t)

8 : (sk
(1)
i)ni=1 ←$ VPSS1[H1].KeyGen(n, t, µ)

9 : for i ∈ {1, . . . , n} do

10 : pk
(2)
i ← gsk

(2)
i

11 : ski ← (sk
(1)
i , sk

(2)
i , pk)

12 : pki ← (pk
(2)
i)

13 : return (pk, {(pki, ski)}i∈[n])

Sign1(k, skk,m)

1 : (sk
(1)
k , sk

(2)
k , pk)← skk

2 : yk ← H2(pk,m)

3 : (rk, Rk)← VPSS1[H1].Gen(k, sk
(1)
k , yk)

4 : return (yk, Rk)

Sign2(k, skk,m, C, {(yj , Rj)}j∈C)

1 : return ⊥ if |C| < 2t− 1

2 : (sk
(1)
k , sk

(2)
k , pk)← skk

3 : y′ ← H2(pk,m)

4 : for j ∈ C do

5 : if yj ̸= y′

6 : return ⊥
7 : (rk, R

′
k)

8 : ← VPSS1[H1].Gen(k, sk
(1)
k , y′)

9 : // Re-derive state from Sign1

10 : if R′
k ̸= Rk

11 : return ⊥
12 : input← (t, µ, C, {Rj}j∈C)

13 : if VPSS1[H1].Verify(input) ̸= 1

14 : return ⊥
15 : R← VPSS1[H1].Agg(input)

16 : c← H3(R, pk,m)

17 : zk ← rk + c · sk(2)k

18 : return zk

Combine(pk,m, C, {(yj , Rj), zj}j∈C))

1 : input← (t, µ, C, {Rj}j∈C)

2 : R← VPSS1[H1].Agg(input)

3 : c← H3(R, pk,m)

4 : // λj are Lagrange

5 : // coefficients for C

6 : z ←
∑
j∈C

zjλj

7 : if gz ̸= R · pkc

8 : return ⊥
9 : return σ = (R, z)

Fig. 6: Arctic, a deterministic threshold Schnorr signature scheme. Arctic requires
that the minimum number of signing parties µ ≤ n be at minimum µ ≥ 2t− 1,
where t is the tolerated corruption threshold. We further require that messages
exchanged between participants are sent over an authenticated channel. Arctic
builds upon the verifiable pseudorandom secret sharing scheme VPSS1 defined in
Section 4.3, as well as Shamir secret sharing. Verification of signatures is identical
to the Schnorr verification algorithm.

25

5.1 The Construction

We now give more detail for each stage in Arctic; see Figure 6 for a high-level
overview.

Key Generation. All participants with identifiers i ∈ [n] begin by receiving a

secret signing share sk
(2)
i and a public signing share pk

(2)
i = gsk

(2)
i . In Figure 6,

we show key generation as a centralized procedure, but a DKG can likewise be

used. Each sk
(2)
i is a t-of-n Shamir secret sharing of the group’s joint secret key

sk; participants use these keys for signing messages. Participants also receive the

public signing keys {pk(2)i }i∈[n] for all other participants.

Each participant receives a secret VPSS1 key sk
(1)
i generated by performing

VPSS1.KeyGen. Participants use these keys to generate nonces and commitments
for each signing session. Each participant’s public key share pki is just one

public key, where pki = pk
(2)
i . Each participant’s secret key share is the tuple

ski = (sk
(1)
i , sk

(2)
i , pk).

Coordinator Role. Our description of Arctic assumes an external mechanism
to choose the set C ⊆ [n] of signers, such that µ ≤ |C| ≤ n. The coordinator may
perform denial of service attacks, but otherwise cannot impact the security of
Arctic. The coordinator can be a standalone entity, or may also be a signer as
well. It is straightforward, however, to define Arctic in a peer-to-peer setting.

Signing. In the first round of signing, each participant k receive as input a mes-
sage m. First, each party derives yk ← H2(pk,m). To generate their nonce rk and

commitment Rk, each participant performs (rk, Rk) ←$ VPSS1.Gen(k, sk
(1)
k , yk).

Each participant then outputs (yk, Rk); they do not need to keep any state.
In the second round of signing, all participants again receive as input a

message m, as well as a set C representing the indices of at least µ signers,
where C ⊆ [n], |C| ≥ µ. Additionally, participants receive the list of tuples
{(yj , Rj)}j∈C . First, each party re-derives y′ ← H2(pk,m). Then, each party
checks the consistency of all other parties’ views of m by checking that for each
i ∈ C, yi = y′. Because we require that each protocol message is authenticated
by its respective party, then this check guarantees that an adversarial player
cannot split the view of honest players by sending different messages or choices
of coalitions. If any check fails, the party aborts.

Otherwise, if all consistency checks succeed, each participant re-derives their
nonce and commitment using VPSS1, again performing (rk, R

′
k)←

$ VPSS1.Gen(k,

sk
(1)
k , y′). Then, the participant checks that R′

k = Rk; i.e., that the commitment
for k in the set of commitments given as input to Sign2 indeed is the correct
commitment for this party. The participant aborts if the check does not hold.

Then, each participant verifies that all other participants followed the protocol
to derive their commitment, by checking VPSS1.Verify(t, µ, C, (Rj)j∈C). If the
check fails, they abort the protocol.

26

Finally, if all of the above checks pass, each participant k ∈ C will then derive
the group commitment R ← VPSS1.Agg(t, µ, C, {Rj}j∈C), and the challenge
c ← H3(R, pk,m). Finally, each participant derives their signature share zk ←
rk + c · sk(2)k . Each participant outputs zk as its output for Sign2.

Combination and Verification. To perform the Combine algorithm, the
group commitment R is first derived using values output by participants from
Sign1. Then, the response z is derived by finding z ←

∑
j∈C zjλj , where the

λj are the Lagrange coefficients for the set C. The output from Combine is the
Schnorr signature σ = (R, z), which can be verified using the single-party Schnorr
verification algorithm given in Definition 1.

5.2 Possible Extensions

Robustness. Arctic as currently defined is not robust; if any party submits
invalid commitments, then the output from VPSS1.Agg cannot be used. However,
it is possible to extend VPSS1 to be robust, therefore also ensuring that Arctic
can likewise be extended. To do so in a secure manner, the robust extension
would require additional players, along with a protocol to come to consensus
about which players misbehaved.

In particular, by requiring that the minimum number of participants µ be
of size at least µ ≥ 3t− 2, VPSS1 and Arctic can be securely used in a robust
manner. The requirement that µ ≥ 3t−2 is referred to as the honest supermajority
setting. We give further details on how robustness can be achieved in the full
version of this work [37, App.C]. In this setting, VPSS1.Verify can both detect
any inconsistencies as well as identify the misbehaving players. This property
could likewise allow for extending Arctic to support robustness, under the same
assumption that µ ≥ 3t− 2.

Distributed Key Generation. To define the signing keys (pk(2), (sk
(2)
i)ni=1),

any DKG that Shamir secret shares a discrete logarithm secret key could be
employed, such as the three-round DKG by Gennaro et al. [29].

As one possibility to perform VPSS1[H1].KeyGen in a distributed manner,
each subset of n− t+1 parties could assign one representative to generate a secret
PRF key uniformly at random for that subset. The representative would then
share this PRF key with all parties in their subset. To ensure security against
fully malicious adversaries, parties within each subset could perform a subsequent
broadcast round to compare their received inputs, to ensure consistency.

Completing Sign2 with t Parties. While Sign1 must be performed by µ ≥ 2t−1
number of signers, Sign2 requires only t signers in total to perform verification of
nonces and generating signature shares. Furthermore, Sign2 can be performed by
any t number of signers, not necessarily those which participated in Sign1.

5

5 We thank the anonymous PKC reviewer for pointing out this extension.

27

5.3 Security

Correctness. In the first round of signing, participants will output nonces and

commitments (ri, Ri)← VPSS1.Gen(i, sk
(1)
i , yi), for i ∈ C, where yi ← H2(pk,m),

and Ri = gri .
In the second round of signing, each participant receives the set of tuples

{(yj , Rj)}j∈C . After deriving y′ ← H2(pk,m), then the check that yj = y′ for
each j ∈ C will succeed, when the protocol is performed honestly.

Because VPSS1 is correct, then VPSS1.Verify(t, µ, C, {Rj}j∈C) will output 1

and the same group commitment R =
∏

j∈C R
λj

j will be computed regardless
of the choice of C. Because VPSS1.Gen is deterministic, then after deriving

y ← H2(pk,m), VPSS1.Gen(k, sk
(1)
k , y) will output the same (rk, Rk) as derived

in the first round of signing.
After deriving (rk, Rk), all signers in a coalition C output valid signature

shares zk with respect to R and challenge c = H3(pk, R,m), where zk = rk+c·sk(2)k .
The aggregated signature is then σ = (R, z), where z =

∑
j∈C zj · λj . Because

sk =
∑

j∈C sk
(2)
j λj , pk = gsk = g

∑
j∈C sk

(2)
j λj , and R =

∏
j∈C R

λj

j = g
∑

j∈C rj ·λj ,
we have that gz = R · pkc, as required.

Unforgeability. We next demonstrate the unforgeability of Arctic, via Theo-
rem 1.

Theorem 1. Arctic is unforgeable in the ROM against a PPT adversary A play-
ing the static unforgeability game as shown in Figure 2 against Arctic, assuming
A can make up to t− 1 corruptions, the number of honest parties is at least t,
the discrete logarithm assumption holds, participants exchange messages over an
authenticated channel, VPSS1 is a secure VPSS, and where (n, t) ∈ N are such
that

(
n−1
t−1

)
= poly(n).

Concretely, let AdvdlD(λ) be the advantage of an adversary D against the
discrete logarithm assumption. The advantage of A is bounded by

AdvufArctic,A(λ, n, t, µ) ≤

√
qrAdv

dl
D(λ) +

2(q1 + q3)

q
+

3q2r
q

where µ ≥ 2t− 1 and n ≥ µ, and where qr = q2 + q3 +2qs +1, such that qs is
the number of times A is allowed to query the signing oracles, q1 is the number
of times A is allowed to query H1, q2 is the number of times that A is allowed to
query H2, and q3 is the number of times A is allowed to query H3.

We give the corresponding proof for Theorem 1 in the full version of this
work [37, App.D].

6 Performance Analysis of Arctic

In this section, we analyze the performance of Arctic. In terms of the number
of rounds of communication, Arctic matches the state of the art, with two, and

28

5 10 15 20 25

100

101

102

103

t = 3

t = 5

t = 6

t = 7

t = 8

t = 9

t = 11

MuSig-DN

Number of parties (|C| = n)

W
al
l
cl
o
ck

ti
m
e
(m

s)

(a) Single-core wall clock time for various param-
eter combinations for Arctic. The times shown
are the sum of the computation times for Sign1,
Sign2, and Combine. The computation time for
MuSig-DN is shown for comparison.

1 2 4 8 16 32

102

103

40-core 2.3 GHz

4-core 3.7 GHz

Number of cores

W
al
l
cl
o
ck

ti
m
e
(m

s)

(b) Scaling experiment, showing the
wall clock time for the largest con-
figuration (n, |C|, t) = (25, 25, 11)
shown in Figure 7a as we increase
the number of CPU cores.

Fig. 7: Experimental results for Arctic

it sends significantly less bandwidth per signature, at 65 bytes per participant.
Therefore, we focus on the computational complexity.

There are two sources of potentially expensive computation: the two calls
to VPSS1.Gen (one in each of Sign1 and Sign2), and the call to VPSS1.Verify in
Sign2. Which one dominates depends on the parameters n, t, and the number
of participants in the signing protocol. Recall that C is a set representing the
identifiers of participants in a particular signing session. Although the minimum
number of participants required for signing is |C| ≥ µ ≥ 2t−1, we assume |C| = n
for this analysis, to give an upper performance bound. As such, performance will
be even better when µ ≤ |C| < n.

VPSS1.Gen primarily performs δ =
(
n−1
t−1

)
hash computations, field multiplica-

tions, and field additions, as seen in Equation 4 (recalling that the L′
ai
(k) values

can be precomputed). VPSS1.Verify computes ℓ = |C| − t, |C|-way multiexponen-
tiations. When t is small, we expect the VPSS1.Verify cost to dominate, and for
larger t, the VPSS1.Gen cost should dominate.

To concretely evaluate the performance of Arctic, we implemented it in Rust.6

We ran our implementation over all allowable combinations of parameters t ≥ 2,
2t− 1 ≤ |C| ≤ n ≤ 25, using a 4-core 3.7GHz Intel E-2374G CPU. We measured
the computation time for each of Sign1, Sign2, and Combine, averaged over 10
signatures, for each parameter combination. In Figure 7a, we show the (single-core)

6 Our code is available at https://git-crysp.uwaterloo.ca/iang/arctic/.

29

https://git-crysp.uwaterloo.ca/iang/arctic/

total runtime of Sign1, Sign2, and Combine for various combinations of parameters.
We concretely measure VPSS1.Gen to take around 0.24δ microseconds for each
of its two invocations, and VPSS1.Verify to take around 7ℓ|C| microseconds. For
t ≤ 4, the latter dominates, for t = 5, they are roughly comparable, and for t ≥ 6,
the former quickly dominates.

For comparison, we also show the computational time for MuSig-DN, but
only the zero-knowledge proof and verification components of their algorithm. We
ran their code [45] on our same machine to obtain these figures. We can see that
for n ≤ 20, Arctic is more than an order of magnitude faster than MuSig-DN,
and for n ≤ 10, it is three orders of magnitude faster.

As seen in Figure 7a, the computation time for the (n, |C|, t) = (25, 25, 11)
parameter combination, where δ =

(
24
10

)
= 1961256 is around 940ms, almost all

of which is spent in VPSS1.Gen computing Equation 4. However, we observe that
Equation 4 computes the sum of δ independent terms, and so is highly amenable
to parallelization, which we also implemented and measured. We ran this scaling
experiment both on the above machine, and also on a 40-core 2.3GHz Intel 8380
CPU. The results are shown in Figure 7b. Although the slower clock speed of
the 40-core CPU puts it at a disadvantage for smaller numbers of cores, we can
see almost linear scaling for both CPUs. Using all 4 cores, the 4-core CPU sees a
speedup of 3.69× for VPSS1.Gen and 3.65× in total time, while using 32 cores,
the 40-core CPU sees a speedup of 27.9× for VPSS1.Gen and 25.7× in total time.
Beyond 32 cores, we observed diminishing returns.

7 Conclusion

In this work, we presented Arctic, a deterministic and stateless threshold Schnorr
signature scheme for the honest majority setting. By not requiring zero-knowledge
proofs of verifiable random functions, Arctic is simpler than previous deterministic
threshold Schnorr schemes, and for small to moderate sized groups of signers,
Arctic is one to three orders of magnitude faster.

Acknowledgements

We thank Douglas Stebila for discussion and his feedback on this work. We thank
Lior Eagen for his discussion and help estimating the computational overhead of
Musig-DN proofs. This work benefited from the use of the CrySP RIPPLE Facility
at the University of Waterloo. This research was undertaken, in part, thanks to
funding from the Canada Research Chairs program, award CRC-2018-00135.

References

1. M. Bellare, E. C. Crites, C. Komlo, M. Maller, S. Tessaro, and C. Zhu. Better
than Advertised Security for Non-interactive Threshold Signatures. In Y. Dodis
and T. Shrimpton, editors, CRYPTO 2022, volume 13510 of LNCS, pages 517–550.
Springer, 2022.

30

2. M. Bellare and G. Neven. Multi-Signatures in the Plain Public-Key Model and a
General Forking Lemma. In A. Juels, R. N. Wright, and S. D. C. di Vimercati,
editors, Proceedings of the 13th ACM Conference on Computer and Communications
Security, CCS 2006, Alexandria, VA, USA, October 30 - November 3, 2006, pages
390–399. ACM, 2006.

3. M. Bellare and P. Rogaway. The Security of Triple Encryption and a Framework
for Code-Based Game-Playing Proofs. In S. Vaudenay, editor, EUROCRYPT
2006, 25th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, volume
4004 of Lecture Notes in Computer Science, pages 409–426. Springer, 2006. doi:
10.1007/11761679_25.

4. F. Benhamouda, E. Boyle, N. Gilboa, S. Halevi, Y. Ishai, and A. Nof. Generalized
Pseudorandom Secret Sharing and Efficient Straggler-Resilient Secure Computation.
In K. Nissim and B. Waters, editors, Theory of Cryptography - 19th International
Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, volume 13043 of
LNCS, pages 129–161. Springer, 2021. doi:10.1007/978-3-030-90453-1_5.

5. F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and M. Raykova. On the (in)security
of ROS. In A. Canteaut and F. Standaert, editors, EUROCRYPT 2021, Zagreb,
Croatia, October 17-21, 2021, volume 12696 of LNCS, pages 33–53. Springer, 2021.

6. A. Boldyreva. Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap-Diffie-Hellman-Group Signature Scheme. In Y. Desmedt, editor, PKC
2003, Miami, FL, USA, January 6-8, 2003, volume 2567 of LNCS, pages 31–46.
Springer, 2003.

7. D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil Pairing. J.
Cryptol., 17(4):297–319, 2004.

8. C. Bonte, N. P. Smart, and T. Tanguy. Thresholdizing HashEdDSA: MPC to the
Rescue. Int. J. Inf. Sec., 20(6):879–894, 2021. doi:10.1007/s10207-021-00539-6.

9. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient
Pseudorandom Correlation Generators from Ring-LPN. In D. Micciancio and
T. Ristenpart, editors, CRYPTO 2020 - 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, volume
12171 of Lecture Notes in Computer Science, pages 387–416. Springer, 2020. doi:
10.1007/978-3-030-56880-1_14.

10. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short Proofs for Confidential Transactions and More. In 2018 IEEE Symposium
on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA, pages 315–334. IEEE Computer Society, 2018. doi:10.1109/SP.
2018.00020.

11. R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. UC non-
interactive, proactive, threshold ECDSA with identifiable aborts. In J. Ligatti,
X. Ou, J. Katz, and G. Vigna, editors, CCS ’20: 2020 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, USA, November 9-13,
2020, pages 1769–1787. ACM, 2020.

12. I. Cascudo and B. David. SCRAPE: Scalable Randomness Attested by Public
Entities. In D. Gollmann, A. Miyaji, and H. Kikuchi, editors, Applied Cryptography
and Network Security (ACNS) 2017, volume 10355 of LNCS, pages 537–556. Springer,
2017.

13. H. Chu, P. Gerhart, T. Ruffing, and D. Schröder. Practical Schnorr Threshold
Signatures Without the Algebraic Group Model. In H. Handschuh and A. Lysyan-
skaya, editors, CRYPTO 2023 - 43rd Annual International Cryptology Conference,

31

https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-030-90453-1_5
https://doi.org/10.1007/s10207-021-00539-6
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020

CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, volume 14081 of
LNCS, pages 743–773. Springer, 2023. doi:10.1007/978-3-031-38557-5_24.

14. D. Connolly, C. Komlo, I. Goldberg, and C. Wood. The Flexible Round-Optimized
Schnorr Threshold (FROST) Protocol for Two-Round Schnorr Signatures, 2024.
URL: https://www.rfc-editor.org/rfc/rfc9591.html.

15. R. Cramer, I. Damg̊ard, and Y. Ishai. Share Conversion, Pseudorandom Secret-
Sharing and Applications to Secure Computation. In J. Kilian, editor, Theory of
Cryptography, Second Theory of Cryptography Conference, TCC 2005, Cambridge,
MA, USA, February 10-12, 2005, Proceedings, volume 3378 of Lecture Notes in
Computer Science, pages 342–362. Springer, 2005. doi:10.1007/978-3-540-30576-
7_19.

16. E. C. Crites, C. Komlo, and M. Maller. Fully Adaptive Schnorr Threshold Signatures.
In H. Handschuh and A. Lysyanskaya, editors, CRYPTO 2023 - 43rd Annual
International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA,
August 20-24, 2023, volume 14081 of LNCS, pages 678–709. Springer, 2023. doi:
10.1007/978-3-031-38557-5_22.

17. A. P. K. Dalskov, C. Orlandi, M. Keller, K. Shrishak, and H. Schulmann. Securing
DNSSEC Keys via Threshold ECDSA from Generic MPC. In L. Chen, N. Li,
K. Liang, and S. A. Schneider, editors, ESORICS 2020 - 25th European Symposium
on Research in Computer Security, ESORICS 2020, Guildford, UK, September 14-
18, 2020, volume 12309 of LNCS, pages 654–673. Springer, 2020. doi:10.1007/978-
3-030-59013-0_32.

18. I. Damg̊ard, T. P. Jakobsen, J. B. Nielsen, J. I. Pagter, and M. B. Østergaard. Fast
threshold ECDSA with honest majority. J. Comput. Secur., 30(1):167–196, 2022.
doi:10.3233/JCS-200112.

19. Y. Dodis. Efficient Construction of (Distributed) Verifiable Random Functions.
In Y. Desmedt, editor, Public Key Cryptography - PKC 2003, 6th International
Workshop on Theory and Practice in Public Key Cryptography, Miami, FL, USA,
January 6-8, 2003, Proceedings, volume 2567 of Lecture Notes in Computer Science,
pages 1–17. Springer, 2003. doi:10.1007/3-540-36288-6_1.

20. J. Doerner, Y. Kondi, E. Lee, and A. Shelat. Threshold ECDSA in Three Rounds.
URL: https://eprint.iacr.org/2023/765.

21. M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven, and I. Stepanovs.
On the Security of Two-Round Multi-Signatures. In SP 2019, San Francisco, CA,
USA, May 19-23, 2019, pages 1084–1101. IEEE, 2019.

22. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In A. M. Odlyzko, editor, CRYPTO 1986, Santa Barbara,
California, USA, 1986, volume 263 of LNCS, pages 186–194. Springer, 1986.

23. M. Fischlin. Communication-Efficient Non-interactive Proofs of Knowledge with
Online Extractors. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 152–168. Springer, 2005.

24. D. Galindo, J. Liu, M. Ordean, and J. Wong. Fully distributed verifiable random
functions and their application to decentralised random beacons. In IEEE European
Symposium on Security and Privacy, EuroS&P 2021, Vienna, Austria, September
6-10, 2021, pages 88–102. IEEE, 2021. URL: https://doi.org/10.1109/EuroSP51992.
2021.00017, doi:10.1109/EUROSP51992.2021.00017.

25. F. Garillot, Y. Kondi, P. Mohassel, and V. Nikolaenko. Threshold Schnorr with
Stateless Deterministic Signing from Standard Assumptions. In T. Malkin and
C. Peikert, editors, CRYPTO 2021 - 41st Annual International Cryptology Confer-
ence, CRYPTO 2021, Virtual Event, August 16-20, 2021, volume 12825 of LNCS,
pages 127–156. Springer, 2021. doi:10.1007/978-3-030-84242-0_6.

32

https://doi.org/10.1007/978-3-031-38557-5_24
https://www.rfc-editor.org/rfc/rfc9591.html
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-031-38557-5_22
https://doi.org/10.1007/978-3-031-38557-5_22
https://doi.org/10.1007/978-3-030-59013-0_32
https://doi.org/10.1007/978-3-030-59013-0_32
https://doi.org/10.3233/JCS-200112
https://doi.org/10.1007/3-540-36288-6_1
https://eprint.iacr.org/2023/765
https://doi.org/10.1109/EuroSP51992.2021.00017
https://doi.org/10.1109/EuroSP51992.2021.00017
https://doi.org/10.1109/EUROSP51992.2021.00017
https://doi.org/10.1007/978-3-030-84242-0_6

26. R. Gennaro and S. Goldfeder. Fast Multiparty Threshold ECDSA with Fast
Trustless Setup. In D. Lie, M. Mannan, M. Backes, and X. Wang, editors, CCS
2018, Toronto, ON, Canada, October 15-19, 2018, pages 1179–1194. ACM, 2018.

27. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust Threshold DSS
Signatures. In U. M. Maurer, editor, Advances in Cryptology - EUROCRYPT
’96, International Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, volume 1070 of Lecture
Notes in Computer Science, pages 354–371. Springer, 1996. doi:10.1007/3-540-
68339-9_31.

28. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust Threshold DSS
Signatures. Inf. Comput., 164(1):54–84, 2001.

29. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Distributed Key
Generation for Discrete-Log Based Cryptosystems. J. Cryptol., 20(1):51–83, 2007.

30. R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk. Robust and Efficient Sharing
of RSA Functions. J. Cryptol., 20(3):393, 2007.

31. S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks. SIAM J. Comput., 17(2):281–308, 1988.
doi:10.1137/0217017.

32. M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general access
structure. Electronics and Communications in Japan (Part III: Fundamental Elec-
tronic Science), 72(9):56–64, 1989. URL: https://onlinelibrary.wiley.com/doi/abs/
10.1002/ecjc.4430720906, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.
1002/ecjc.4430720906, doi:https://doi.org/10.1002/ecjc.4430720906.

33. S. Jarecki, H. Krawczyk, and J. Resch. Threshold partially-oblivious PRFs with
applications to key management. 2018. URL: https://eprint.iacr.org/2018/733.

34. M. Jawurek, F. Kerschbaum, and C. Orlandi. Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In A. Sadeghi, V. D. Gligor, and
M. Yung, editors, ACM SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 955–966. ACM,
2013. doi:10.1145/2508859.2516662.

35. J. Katz. Round Optimal Robust Distributed Key Generation. 2023. URL: https:
//eprint.iacr.org/2023/1094.

36. C. Komlo and I. Goldberg. FROST: Flexible Round-Optimized Schnorr Threshold
Signatures. In O. Dunkelman, M. J. J. Jr., and C. O’Flynn, editors, Selected Areas
in Cryptography - SAC 2020, volume 12804 of LNCS, pages 34–65. Springer, 2020.
doi:10.1007/978-3-030-81652-0_2.

37. C. Komlo and I. Goldberg. Arctic: Lightweight and Stateless Threshold Schnorr
Signatures. Cryptology ePrint Archive, Paper 2024/466, 2025. URL: https://eprint.
iacr.org/2024/466.

38. Y. Kondi. Personal Communication, 2024.
39. Y. Kondi, C. Orlandi, and L. Roy. Two-Round Stateless Deterministic Two-Party

Schnorr Signatures from Pseudorandom Correlation Functions. In H. Handschuh
and A. Lysyanskaya, editors, CRYPTO 2023 - 43rd Annual International Cryptology
Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, volume
14081 of Lecture Notes in Computer Science, pages 646–677. Springer, 2023. doi:
10.1007/978-3-031-38557-5_21.

40. Y. Lindell. Simple Three-Round Multiparty Schnorr Signing with Full Simulatability.
Cryptology ePrint Archive, Report 2022/374, 2022. https://ia.cr/2022/374.

41. N. Makriyannis. On the Classic Protocol for MPC Schnorr Signatures. Cryptology
ePrint Archive, Paper 2022/1332, 2022. https://eprint.iacr.org/2022/1332. URL:
https://eprint.iacr.org/2022/1332.

33

https://doi.org/10.1007/3-540-68339-9_31
https://doi.org/10.1007/3-540-68339-9_31
https://doi.org/10.1137/0217017
https://onlinelibrary.wiley.com/doi/abs/10.1002/ecjc.4430720906
https://onlinelibrary.wiley.com/doi/abs/10.1002/ecjc.4430720906
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ecjc.4430720906
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ecjc.4430720906
https://doi.org/https://doi.org/10.1002/ecjc.4430720906
https://eprint.iacr.org/2018/733
https://doi.org/10.1145/2508859.2516662
https://eprint.iacr.org/2023/1094
https://eprint.iacr.org/2023/1094
https://doi.org/10.1007/978-3-030-81652-0_2
https://eprint.iacr.org/2024/466
https://eprint.iacr.org/2024/466
https://doi.org/10.1007/978-3-031-38557-5_21
https://doi.org/10.1007/978-3-031-38557-5_21
https://ia.cr/2022/374
https://eprint.iacr.org/2022/1332
https://eprint.iacr.org/2022/1332

42. N. Makriyannis, O. Yomtov, and A. Galansky. Practical Key-Extraction Attacks in
Leading MPC Wallets. Cryptology ePrint Archive, Paper 2023/1234, 2023. URL:
https://eprint.iacr.org/2023/1234.

43. S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable Random Functions. In
40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18
October, 1999, New York, NY, USA, pages 120–130. IEEE Computer Society, 1999.
doi:10.1109/SFFCS.1999.814584.

44. M. Naor, B. Pinkas, and O. Reingold. Distributed Pseudo-random Functions and
KDCs. In J. Stern, editor, EUROCRYPT ’99, volume 1592 of LNCS, pages 327–346.
Springer, 1999.

45. J. Nick. Switch bulletproof example to purify. https://github.com/jonasnick/
secp256k1-zkp/blob/bulletproof-musig-dn-benches/examples/bulletproof.c, 2020.

46. J. Nick, T. Ruffing, Y. Seurin, and P. Wuille. MuSig-DN: Schnorr Multi-Signatures
with Verifiably Deterministic Nonces. In J. Ligatti, X. Ou, J. Katz, and G. Vigna,
editors, CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communica-
tions Security, Virtual Event, USA, November 9-13, 2020, pages 1717–1731. ACM,
2020. doi:10.1145/3372297.3417236.

47. C. Orlandi, P. Scholl, and S. Yakoubov. The Rise of Paillier: Homomorphic
Secret Sharing and Public-Key Silent OT. In A. Canteaut and F. Standaert,
editors, EUROCRYPT 2021 - 40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21,
2021, Proceedings, volume 12696 of LNCS, pages 678–708. Springer, 2021. doi:

10.1007/978-3-030-77870-5_24.
48. D. Pointcheval and J. Stern. Security Proofs for Signature Schemes. In U. M. Maurer,

editor, Advances in Cryptology - EUROCRYPT ’96, International Conference on
the Theory and Application of Cryptographic Techniques, Saragossa, Spain, May
12-16, 1996, Proceeding, volume 1070 of Lecture Notes in Computer Science, pages
387–398. Springer, 1996. doi:10.1007/3-540-68339-9_33.

49. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind
Signatures. J. Cryptol., 13(3):361–396, 2000.

50. T. Ristenpart and S. Yilek. When Good Randomness Goes Bad: Virtual Machine
Reset Vulnerabilities and Hedging Deployed Cryptography. In Proceedings of the
Network and Distributed System Security Symposium, NDSS 2010, San Diego,
California, USA, 28th February - 3rd March 2010. The Internet Society, 2010.
URL: https://www.ndss-symposium.org/ndss2010/when-good-randomness-goes-
bad-virtual-machine-reset-vulnerabilities-and-hedging-deployed.

51. T. Ruffing, V. Ronge, E. Jin, J. Schneider-Bensch, and D. Schröder. ROAST: Robust
Asynchronous Schnorr Threshold Signatures. In H. Yin, A. Stavrou, C. Cremers,
and E. Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11,
2022, pages 2551–2564. ACM, 2022. doi:10.1145/3548606.3560583.

52. C. Schnorr. Efficient Signature Generation by Smart Cards. J. Cryptol., 4(3):161–
174, 1991.

53. C. Schnorr. Enhancing the security of perfect blind DL-signatures. Inf. Sci.,
176(10):1305–1320, 2006. URL: https://doi.org/10.1016/j.ins.2005.04.007, doi:
10.1016/J.INS.2005.04.007.

54. A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.
55. D. R. Stinson and R. Strobl. Provably Secure Distributed Schnorr Signatures and

a (t, n) Threshold Scheme for Implicit Certificates. In V. Varadharajan and Y. Mu,
editors, ACISP 2001, Sydney, Australia, July 11-13, 2001, volume 2119 of LNCS,
pages 417–434. Springer, 2001.

34

https://eprint.iacr.org/2023/1234
https://doi.org/10.1109/SFFCS.1999.814584
https://github.com/jonasnick/secp256k1-zkp/blob/bulletproof-musig-dn-benches/examples/bulletproof.c
https://github.com/jonasnick/secp256k1-zkp/blob/bulletproof-musig-dn-benches/examples/bulletproof.c
https://doi.org/10.1145/3372297.3417236
https://doi.org/10.1007/978-3-030-77870-5_24
https://doi.org/10.1007/978-3-030-77870-5_24
https://doi.org/10.1007/3-540-68339-9_33
https://www.ndss-symposium.org/ndss2010/when-good-randomness-goes-bad-virtual-machine-reset-vulnerabilities-and-hedging-deployed
https://www.ndss-symposium.org/ndss2010/when-good-randomness-goes-bad-virtual-machine-reset-vulnerabilities-and-hedging-deployed
https://doi.org/10.1145/3548606.3560583
https://doi.org/10.1016/j.ins.2005.04.007
https://doi.org/10.1016/J.INS.2005.04.007
https://doi.org/10.1016/J.INS.2005.04.007

56. H. W. H. Wong, J. P. K. Ma, H. H. F. Yin, and S. S. M. Chow. How (Not) to
Build Threshold EdDSA. In Proceedings of the 26th International Symposium on
Research in Attacks, Intrusions and Defenses, RAID 2023, Hong Kong, China,
October 16-18, 2023, pages 123–134. ACM, 2023. doi:10.1145/3607199.3607230.

35

https://doi.org/10.1145/3607199.3607230

	Arctic: Lightweight and Stateless Threshold Schnorr Signatures

