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Abstract—Decentralized path-based transaction (PBT) net-
works maintain local payment channels between participants.
Pairs of users leverage these channels to settle payments via a
path of intermediaries without the need to record all transactions
in a global blockchain. PBT networks such as Bitcoin’s Lightning
Network and Ethereum’s Raiden Network are the most prominent
examples of this emergent area of research. Both networks
overcome scalability issues of widely used cryptocurrencies by
replacing expensive and slow on-chain blockchain operations with
inexpensive and fast off-chain transfers.

At the core of a decentralized PBT network is a routing
algorithm that discovers transaction paths between sender and
receiver. In recent years, a number of routing algorithms have
been proposed, including landmark routing, utilized in the
decentralized IOU credit network SilentWhispers, and Flare, a
link state algorithm for the Lightning Network. However, the
existing efforts lack either efficiency or privacy, as well as the
comprehensive analysis that is indispensable to ensure the success
of PBT networks in practice.

In this work, we first identify several efficiency concerns
in existing routing algorithms for decentralized PBT networks.
Armed with this knowledge, we design and evaluate SpeedyMur-
murs, a novel routing algorithm for decentralized PBT networks
using efficient and flexible embedding-based path discovery and
on-demand efficient stabilization to handle the dynamics of a
PBT network. Our simulation study, based on real-world data
from the currently deployed Ripple credit network, indicates
that SpeedyMurmurs reduces the overhead of stabilization by
up to two orders of magnitude and the overhead of routing a
transaction by more than a factor of two. Furthermore, using
SpeedyMurmurs maintains at least the same success ratio as
decentralized landmark routing, while providing lower delays.
Finally, SpeedyMurmurs achieves key privacy goals for routing
in decentralized PBT networks.

I. INTRODUCTION

Since the advent of Bitcoin [19], many other blockchain-
based payment systems have been proposed and deployed
in practice to serve a multitude of purposes. For instance,
IOweYou (IOU) credit networks [3], [7] such as Ripple [1],
[28] or Stellar [32] leverage blockchain technology to enable

real-time gross settlements [25] between two end users across
different currencies and assets significantly cheaper than the
current central banking system. Ethereum [6] builds on top of
a blockchain to construct a platform to run fully expressive
smart contracts.

However, the growing base of users and transactions is
resulting in blockchain scalability issues [2], [21]. Moreover,
the public nature of the blockchain leads to demonstrable
privacy breaches of sensitive data such as the identities of
the transaction partners and the transaction value [9], [13],
[14], [18], [26]. Academic and industry efforts are leading
towards peer-to-peer (P2P) path-based transaction (PBT) net-
works such as the Lightning Network [21] for Bitcoin, the
Raiden Network [24] for Ethereum, SilentWhispers [11] for
credit networks, or InterLedger [33] and Atomic-swap [10]
for inter-blockchain transactions; these decentralized PBT net-
works are promising for addressing scalability, efficiency, and
interoperability concerns with blockchains through off-chain
transactions requiring no expensive mining efforts. In fact, at
a recent blockchain event, the InterLedger team demonstrated
a transaction through seven blockchains including those in
Bitcoin, Ethereum, and Ripple [36].

Unlike in blockchain-based PBT networks such as Ripple
or Stellar, two users u and v in a decentralized PBT network lo-
cally maintain a weighted link (also called a payment channel,
state channel, or credit link, depending on the application). The
link’s weight characterizes the amount of funds (or assets) that
one user can transfer to the other, the exact nature of the link
depending on the application. For instance, in a credit network,
the weight defines the difference between the amount of credit
u is willing to grant v and the amount v already owes u.

A PBT network builds on top of three key algorithms:
routing, payment and accountability. The routing algorithm
is in charge of finding paths with enough funds from sender
to receiver. The payment algorithm settles the funds between
sender and receiver along the paths connecting them. Finally,
the accountability algorithm allows the resolution of disputes
in the presence of misbehaving users.

While frequently omitted or disregarded as an orthogonal
problem, the design of the routing algorithm is key to the
PBT network’s effectiveness, characterized by the fraction of
successfully resolved transactions; efficiency, characterized by
the delays experienced during a transaction as well as the
overhead created by transactions; and scalability, characterized
by the ability of a PBT network to maintain effectiveness and
efficiency for a growing base of users and transactions.
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Whereas industry supposedly considers efficiency, effec-
tiveness, and scalability to be the main concerns for designing
a routing algorithm, we additionally emphasize the need for
privacy. Otherwise, the routing algorithm might reveal sensitive
information such as the transaction value, the identity of sender
and receiver, and the debt of one user to another. In this paper,
we stress that all of effectiveness, efficiency, scalability, and
privacy are important to the design of a routing algorithm.
A routing algorithm lacking any of these key properties is
unlikely to be deployed.

The few routing algorithms proposed so far for PBT
networks fail to achieve either privacy, efficiency, or scalability.
For instance, the routing algorithm in Ripple and Stellar relies
on a public blockchain that logs the complete PBT network,
thereby introducing blockchain fees and impeding privacy.
Canal [35] relies on a single server to store the complete
PBT network, find paths, and settle payments between users.
Therefore, the server is trivially aware of all links between
users and their transactions. PrivPay [17] leverages trusted
hardware to encrypt the PBT network data at the server and
uses oblivious algorithms to hide the access patterns, thereby
increasing the privacy for the links between users and their
payments. Nevertheless, PrivPay still suffers from a single
point of failure and low scalability. Flare [23], a routing
algorithm for the Lightning Network, requires every user in the
path from sender to receiver to send the current fund amounts
for their payment channels to the sender, thereby leaking
sensitive information [23]. The most promising approach with
regard to privacy is SilentWhispers [11], a decentralized PBT
network without a public ledger. However, as we show in this
paper, the routing algorithm in SilentWhispers lacks efficiency.

In this work, we present SpeedyMurmurs, a routing algo-
rithm for PBT networks that provides formal privacy guaran-
tees in a fully distributed setting and outperforms the state-
of-the-art routing algorithms in terms of effectiveness and
efficiency. SpeedyMurmurs extends VOUTE [30], a privacy-
preserving embedding-based [20] routing algorithm for mes-
sage delivery in route-restricted P2P networks. Targeting mes-
sage transmission in undirected and unweighted networks
rather than payments, VOUTE is unequipped for dealing
with weighted links and specifically changes of these weights
as a result of previous transfers. SpeedyMurmurs combines
the underlying ideas of VOUTE with the specifics of credit
networks. In particular:

• SpeedyMurmurs considers both the available funds and
the closeness to the destination of a neighbor when
routing a payment, resulting in an efficient algorithm with
flexible path selection.

• SpeedyMurmurs employs an on-demand efficient sta-
bilization algorithm that reacts to changes of links if
necessary but keeps the overhead corresponding to these
changes low.

• SpeedyMurmurs provides an improved handling of con-
current transactions by allowing nodes to proactively allo-
cate exactly the amount of funds required for a transaction
rather than barring concurrent transactions from using a
link altogether or risking failures during the subsequent
payment phase.

• In our simulation study, which models a credit network
and transactions based on a real-world dataset of Ripple

ranging from 2013 to 2016, SpeedyMurmurs performs
transactions at about twice the speed of SilentWhispers
and reduces the communication overhead of transactions
by at least a factor of two while maintaining a similar or
higher effectiveness.

• SpeedyMurmurs reduces the overhead of managing link
changes by 2–3 orders of magnitude except for rare
phases (approximately one per year) in the Ripple dataset
corresponding to sudden rapid growth.

• SpeedyMurmurs achieves value privacy, i.e., the value
of a transaction remains hidden, as well as sender and
receiver privacy, i.e., the identities of the two users remain
hidden from the adversary.

In summary, SpeedyMurmurs offers an effective, efficient,
and scalable solution for privacy-preserving routing in PBT
networks, thus being a promising candidate for upcoming
deployment of such networks. Our release of the initial results
initiated a discussion about the deployment of SpeedyMurmurs
or related algorithms in the context of the Lightning network.1

II. STATE OF THE ART AND LIMITATIONS

We first briefly overview the notion of a PBT network.
Then, we introduce the concepts of landmark routing and
embedding-based routing, including the description of Silent-
Whispers [11], a PBT network based on landmark routing, and
VOUTE [30], an embedding-based routing algorithm, which
we adapt to PBT networks in Section IV.

A. PBT Networks

In a PBT network, pairs of users locally maintain links
weighted with application-dependent funds. In the Lightning
Network for instance, two users create a link by adding a
deposit transaction in the blockchain and update such links by
locally adjusting their deposit’s value. The Lightning Network
thereby reduces the load on the blockchain and it has become
the most promising alternative for scaling Bitcoin.

The payment operation in a PBT network involves a path of
intermediate users who adjust their links pairwise to effectively
settle funds between a sender and a receiver. In the Lightning
Network, each intermediate user increases her deposit’s value
with their predecessor on the path by the transaction amount.
Similarly, she decreases the deposit’s value with her successor
by the same amount. However, a payment cannot be performed
without a routing algorithm to find the path itself at first.

B. Landmark Routing

The landmark routing technique [34] enables the computa-
tion of a subset of paths between a sender and a receiver in a
PBT network without relying on the cost-intensive max-flow
approach. The key idea of landmark routing is to determine
a path from sender to receiver through an intermediate node,
called a landmark, usually a well-known node of high connec-
tivity. Using several such landmarks increases the number of
computed paths between sender and receiver. While landmark
routing does not discover all possible paths and hence might
lead to a lower probability for a successful payment, past work

1https://lists.linuxfoundation.org/pipermail/lightning-dev/2017-November/
000798.html
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indicates that the decrease of success is small in comparison
to the gain in performance [17], [35].

Initially, each landmark starts two instances of the Breadth-
First Search (BFS) algorithm, resulting in two spanning trees.
In the first instance, only forward edges are considered and
shortest paths from the landmark to each node are calculated.
The second instance considers only reverse edges and results
in shortest paths between each node and the landmark. As PBT
networks change over time, landmarks repeat this initialization
process periodically.

The path discovery between a sender and receiver then
concatenates the path from the sender to the landmark (using
reverse edges) and the path from the landmark to the receiver
(using forward edges). The sender can send funds along the
path as long as the amount of funds is at most as high as the
available credit on each link on the path.

There are two versions of landmark routing. The first
version, which we call landmark-centered, always concatenates
a path from the source to a landmark and from the landmark
to the destination. The second version, which we call tree-only
routing, discovers the shortest path in the BFS tree, which does
not necessarily contain a landmark.

1) Landmark Routing in SilentWhispers: SilentWhispers
utilizes landmark-centered routing to discover multiple paths
and then performs multi-party computation to determine the
amount of funds to send along each path. The initialization
of the landmark routing follows the above description, using
multiple landmarks that perform periodic BFSs.

The actual payment relies on two operations: a probe
operation and the actual payment operation. We here describe
the probe operation as it performs the routing and decides
on the credit to be transferred along each path. The payment
operation then merely executes the transfers suggested by the
probe operation in a secure manner.

At the core of the probe operation is a secret-sharing-based
multiparty computation that computes the credit available in
a path. After discovering paths between sender and receiver
using landmark routing, each pair of adjacent users in the path
sends a share of their link’s value to each of the landmarks.
The sender and receiver must construct additional shares that
act as padding in order to hide the actual length of the path,
and effectively preserve the identities of the actual sender and
receiver. With the help of cryptographic signatures, relying on
fresh keys to hide the identities of the nodes on the path, and
using multiparty computation, the landmarks determine shares
that the sender can combine to obtain the minimal available
credit zi of the ith path. If the sum of the zi values is at least
equal to the total payment amount, the sender assigns values
c1, . . . , c|L| to the paths such that ci ≤ zi. The result of the
probe operation are these values ci and handles to the paths,
which the payment operation leverages to perform the actual
transfer.

2) Weaknesses of SilentWhispers: Based on the above
description, we identify four issues related to the implemen-
tation of the routing algorithm in SilentWhispers. First, the
periodic tree creation (execution of BFS) fails to take into
account changes in the network immediately, which can lead to
significant failure rates due to outdated information. Moreover,

periodic tree creation induces unnecessary overhead due to re-
computation for parts of the PBT network that might not have
changed.

Second, as SilentWhispers relies on landmark-centered
routing, all paths include the landmarks even if i) the sender
and receiver of a payment are in the same branch, or ii) there
is a short path between sender and receiver but the links are
not part of the spanning tree. Thus, the overall path used
for the payment can be unnecessarily long, leading to longer
delays and a lower success ratio due to the increased chance
of encountering at least one link without enough funds.

Third, the probe operation requires that the nodes included
in a transaction path send shares to all landmarks. This means
that the transaction overhead scales quadratically in the number
of landmarks.

Fourth, SilentWhispers does not provide a suitable solution
for concurrency. Assume that one or more probe operations
aim to use the same link. The probe operation can either
provide the same amount of available credit for both links or
block use of the link for some time after the first time a probe
operation finds a path containing the link. The former can lead
to failures later on as the available credit, while sufficient for
each transfer on its own, might not cover multiple transfers.
While a block prevents such complications, it increases the
likelihood of failures because probe operations cannot use
certain links, which might have enough credit to execute
multiple transactions. Hence, both approaches to concurrency
have severe drawbacks.

In summary, landmark routing as used in SilentWhispers
has various weaknesses that we aim to overcome in this work.

C. Embedding-based Routing

Peer-to-peer PBT networks differ from common peer-to-
peer networks as the connections between peers are predefined
and cannot be changed to improve the quality of the routing.
Due to their fixed structure, peer-to-peer PBT networks are
route-restricted and hence are closely related to Friend-to-
friend (F2F) networks, which restrict connections to peers
sharing a mutual trust relationship. As a consequence, we
summarize the state-of-the-art approach to routing in F2F
networks, namely embedding-based routing [20], [30].

Embeddings rely on assigning coordinates to nodes in
a network and having nodes forward packets based on the
distances between coordinates known to that node and a desti-
nation coordinate. Greedy embeddings are similar to landmark
routing in that they assign coordinates based on a node’s
position in a spanning tree. However, greedy embeddings
disregard the spanning tree after assigning the coordinates and
in particular discover shorter paths using links that are not in
the spanning tree. We refer to links that are not contained in
the tree but are used during routing as shortcuts. When a node
v forwards a message addressed to a destination coordinate,
v chooses the neighbor with the coordinate closest to the
destination coordinate to forward the message to. Hence, v
might either use a link in the spanning tree (forwarding to a
child or parent), or a shortcut.

Despite the fact that routes can contain shortcuts, there is
no guarantee that routes with shortcuts exist. Hence, the links
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Fig. 1: Examples of different spanning tree routing schemes for landmark lm, sender s, receiver r.

in the trees provide the guarantee that the routing works and
removing any such links likely leads to failures. In the absence
of shortcuts, embedding-based routing is identical to tree-only
routing. As a consequence, it is important to adapt the tree
when the nodes or links change.

Prefix Embedding [8] is a greedy embedding that enables
routing of messages in F2F overlays. As illustrated in Fig. 1,
Prefix Embedding assigns coordinates in the form of vectors,
starting with an empty vector at the landmark/root. Each
internal node of the spanning tree enumerates its children and
appends the enumeration index of a child to its coordinate
to obtain the child coordinate. The distance between two
such coordinates corresponds to the length of the shortest
path in the spanning tree between them; i.e., the distance of
two coordinates id(u) and id(v) with |id(w)| denoting the
coordinate length of node w and cpl(id(u), id(v)) denoting
the common prefix length is

d(id(u), id(v)) = |id(u)|+ |id(v)| − 2cpl(id(u), id(v)). (1)

Based on Eq. 1, nodes determine which neighbor is closest
to the receiver in terms of their coordinates’ distance and
forwards a message accordingly. Fig. 1 displays an example
to illustrate the difference between various tree-based routing
schemes and illustrates the coordinate assignment in Prefix
Embedding.

1) Prefix Embeddings in VOUTE: VOUTE [30] is a routing
algorithm building upon Prefix Embedding with the goal of
anonymous and efficient message delivery for a dynamic route-
restricted network; i.e., a network that does not allow the
establishment of links between arbitrary nodes. We quickly
describe how VOUTE addresses the issues of privacy and
dynamics.

Prefix Embedding reveals the unique coordinate of the
receiver. In contrast, VOUTE allows nodes to provide anony-
mous return addresses instead of their original coordinates. A
receiver generates a return address by padding its coordinate to
a fixed length and generating keyed hashes of the coordinate’s
elements. The anonymous return address is then composed of
the tuple (keyed hashes, key), where the key allows forwarding
nodes to determine the common prefix length required in Eq. 1.
Based on the common prefix length of the receiver’s coordinate
id(r) and a neighbor’s coordinate id(u), forwarding nodes
can compute d(id(u), id(r)) + ∆ with ∆ corresponding to
the constant length of coordinates after the padding. Hence,
they can forward the message along the same path as when
using clear-text coordinates, while maintaining the privacy of
the receiver’s true coordinates.

The original Prefix Embedding coordinates reflect an enu-
meration and hence have little entropy. As a consequence,
VOUTE replaces the enumeration index with random b-bit
numbers; e.g., for b = 128. In this manner, guessing the
coordinate of an unknown node becomes computationally
unfeasible for an adversary.

Rather than periodically reconstructing the spanning tree,
VOUTE addresses dynamics with an on-demand stabilization
algorithm. When constructing the tree, nodes send invitations
to all neighbors stating their coordinate and offering to become
a parent. Each node accepts one such invitation but keeps
the most recent invitation of all neighbors to quickly react to
network dynamics. If nodes establish a new link, nodes already
contained in the spanning tree offer invitations to their new
neighbors. If a node is not yet part of the tree, it accepts the
invitation. Otherwise, it stores it for future consideration. On
the other hand, if a link in the spanning tree ceases to exist, the
child node and all its descendants choose a new parent based
on their remaining invitations. They then disseminate their new
coordinate to all neighbors. In this manner, spanning trees and
embeddings have an on-demand repair mechanism rather than
periodic full re-computation as in landmark routing.

2) Limitations of VOUTE: VOUTE has not been defined
in the context of PBT networks and therefore presents several
limitations that must be overcome before considering it as a
routing algorithm in PBT networks. In particular, VOUTE has
incompatible assumptions with regard to the nature of links
and topology dynamics in a PBT network.

First, VOUTE considers undirected and unweighted links
between pairs of users. In a PBT network instead, links are
directed and weighted, as are payments. While all links allow
message transfer in VOUTE, a link in a PBT network might not
hold enough funds to perform a payment. The directed nature
of the links indicates that VOUTE’s construction algorithm is
insufficient as it is unclear how to deal with unidirectional
links. If unidirectional links are part of the spanning tree,
a node (and it descendants) might only be able to send or
receive funds but not both. The weighted nature of links and
the impossibility to use links for all payments contradicts one
of the key assumptions of VOUTE’s algorithm, namely that
in the absence of link failures, all links can transfer messages.
Therefore, to apply VOUTE in the context of PBT networks,
it is necessary to design algorithms that deal with weighted
links and transfers.

Second, VOUTE considers dynamics in the form of nodes
joining and leaving the network. However, in PBT networks,
the weights of the links are the main source of change. In
particular, each successful transaction might change several
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links. A variant of VOUTE for PBT networks would likely
be inefficient if it reacts to all of these changes. Deciding on
when and how to adapt to changes of links is important for
the design of such a variant.

Finally, VOUTE does not have to deal with concurrency
issues. While concurrent message transfers might increase
delay and congestion, they do not change the capacity of links
and transmitting a message does not affect the ability of the
link to transmit future messages. However, separated probe and
payment operations as in SilentWhispers, creates concurrency
issues. SilentWhispers provides insufficient solutions here, so
we require a new concurrency algorithm.

In summary, although VOUTE presents an interesting alter-
native to landmark routing as implemented in SilentWhispers
for the routing operation, its application in PBT network
scenarios is not straightforward.

III. SYSTEM MODEL AND GOALS

We start with a generic system model for distributed routing
algorithms, followed by our privacy goals and our performance
metrics.

A. Our Model

We model a distributed PBT network (G,w) as a directed
graph G = (V,E) and a weight function w on the set of edges.
The set of nodes V corresponds to the participants of the PBT
network. A link (edge) from node u to v exists if u can transfer
funds to v. We define the set of outgoing neighbors of a node
v as Nout(v) = {u ∈ V : (v, u) ∈ E}. Correspondingly, we
define the set of incoming neighbors of a node v as Nin(v) =
{u ∈ V : (u, v) ∈ E}. Furthermore, a path p is a sequence
of links e1 . . . ek with ei = (v1i , v

2
i ), and v2i = v1(i+1) for

1 ≤ i ≤ k − 1. Moreover we denote by L = {l1, . . . , l|L|} a
set of nodes, called landmarks, that are well known to other
users in the PBT network. We denote by |L| the size of the
set L.

The function w describes the amount of funds that can be
transferred between two nodes sharing an edge. We thereby
abstract from the specific implementation of the function w.
For instance, in the Bitcoin Lightning Network, the function
w : E → R defines the number of bitcoins u can transfer to v
in a payment channel opened between them.

We define the funds available in a path e1, . . . , ek as the
minimum w(ei). Moreover, we define the the net balance of a
node v as cnode(v) =

∑
u∈Nin(v)

w(u, v)−
∑

u∈Nout(v)

w(v, u).

1) Operations: Routing in a PBT network consists of a
tuple of algorithms (setRoutes, setCred, routePay) defined as
follows:

setRoutes(L): Given the set L = {l1, . . . , l|L|} of land-
marks, setRoutes initializes the routing information required
by each node in the PBT network.

setCred(c, u, v): Given the value c and the nodes u and
v, setCred sets w(u, v) = c. In addition, setCred might alter
the routing information initially generated by setRoutes.

((p1, c1), . . . , (p|L|, c|L|)) ← routePay(c, u, v). Given a
value c, a sender u and a receiver v, routePay returns a set
of tuples (pi, ci), denoting that ci funds are routed through the
path described by pi.

a) Correctness: A key property of a PBT network is
correctness. Intuitively, correctness indicates that the routing
algorithm i) suggests to spend the desired funds c rather than
a higher value and ii) suggests paths that indeed have suffi-
cient funds. Let (setRoutes, setCred, routePay) be the routing
operations of a PBT network and let ki denote the length of
the ith discovered path. We say that the PBT network is correct
if for all results ((p1, c1), . . . , (p|L|, c|L|)) of routePay(c, u, v),
the following two conditions hold:

•
∑

i ci ≤ c
• For each pi := e1i , . . . , e

ki
i and each eji , ci ≤ w(eji ).

We note that the routePay operation could return paths that
contribute

∑
i ci < c, and it is still considered correct. This

accounts for the cases where the PBT network does not provide
enough liquidity between the sender and receiver to perform
a transaction.

B. Attacker Model

We consider a fully distributed network. Our primary attack
scenario is companies and individuals interested in a user’s
financial situation rather than governmental security agencies.
The adversary controls a subset of the nodes in the network
either by inserting its own nodes or corrupting existing nodes.
We assume that the adversary cannot choose the set of users
at will, as some users will be harder to corrupt by social
engineering or malware attacks. In general, we assume that
the attacker does not know all links and nodes in the network
and in particular cannot access routing information locally
stored at non-compromised nodes. The assumption that the
attacker does not know the complete topology of a large-scale
distributed system with participants from a multitude of regions
and countries seems realistic for our attack scenario. If we
indeed have an adversary that knows the full topology, we
might not be able to hide the identities of sender and receiver
but can still hide the transaction value.

Our adversary aims to undermine the privacy rather than
perform a large-scale denial-of-service attack. We argue that
the primary defense against denial-of-service attacks is de-
tection and expulsion of malicious nodes. While related to
routing, different operations are required for realizing detection
and expulsion, and they are out of scope for this paper.

While our overall adversary model limits the adversary’s
capacities, we nonetheless define our value privacy goals for an
attacker that has a global view of the topology, indicating that
we can still achieve some privacy against a stronger adversary.

C. Privacy Goals

The hope that cryptography and decentralization might
ensure robust privacy was among the strongest drivers of
Bitcoin’s and blockchains’ early success. We expect businesses
and customers employing the PBT networks to be interested
in hiding their transactions from competitors and even service
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providers. Therefore, ensuring privacy for path-based transac-
tions is important.

Like PrivPay [17], SilentWhispers [11], Fulgor [12], and
Rayo [12], we aim to hide values (value privacy), and the
identities of sender and receiver (sender/receiver privacy) of
path-based transactions. We use the term transaction privacy to
refer to meeting all three of these notions. Next, we informally
describe these privacy properties for PBT networks, and refer
the readers to the PrivPay paper [17] for the formalized
versions defined in the context of credit networks.

Value Privacy: A PBT network achieves value privacy
if it is not possible for any adversary to determine the total
value of a transaction between non-compromised users as long
as none of the employed intermediate nodes is compromised.

Let s and r be two non-compromised users, and let
(p1, c1), . . . , (p|L|, c|L|) be the result of a routePay(c, s, r)
operation. If for every path pi, all nodes on that path are non-
compromised, the adversary (even a global passive adversary)
obtains no information about the transaction value c.

Notice that, as elaborated in Section IV-E, we can provide
a weaker form of value privacy even when the adversary
compromises some intermediate nodes as long as all nodes on
at least one of the employed paths remain non-compromised.

Sender Privacy: A PBT network achieves sender pri-
vacy if it is not possible for any adversary to determine the
sender in a path-based transaction between non-compromised
users.

In particular, for two non-compromised users s and r, the
attacker should not be able to determine the sender s of any
routing operation routePay(z, s, r), unless she has complete
knowledge of s’s incoming links i.e., she knows the set Nin(s)
though not necessarily the funds of the links e ∈ Nin(s).

Note that although the local attacker without a global view
of the network might know (and even control) all nodes in
Nin(s), she might not be aware that she does control all
such nodes. As a consequence, similar to P2P anonymity
systems [15], [16], [27], controlling all neighbors does not
automatically mean she can be sure that s did initiate the
routing. Therefore, we expect the sender privacy to hold even
when the attacker controls all nodes in Nin(s) for the sender
s but does not know that she does control the whole set.

Receiver Privacy is defined analogously to sender privacy,
and the adversarial assumptions also remain the same except
that instead of neighboring nodes Nin(s) of the sender s, now
for receiver privacy, we consider Nout(r) of the receiver r.

D. Performance Metrics

In this section, we describe the performance goals to be
achieved by a routing algorithm, which we denote generically
by R. In the following, we denote by (Gt, wt) the snapshot of
a PBT network at time t. Note that although we abstract away
the payment and accountability algorithms in this work, a PBT
network must implement them and therefore a PBT network
is dynamic. Let {(ti, ci, si, ri)} be a set of payment requests
from si to ri for an amount ci at time ti.

The performance of a routing algorithm R is characterized
by the following four metrics:

• Success ratio: Let ((p1, c1), . . . , (p|L|, c|L|)) be the set of
paths returned by routePay(c, s, r) as implemented in R.
We consider the transaction successful only if

∑
i ci = c.

The success ratio describes the fraction of transactions
that are successful.2

• (Hop) Delay: The delay of R with regard to a transac-
tion (ti, ci, si, ri) is the difference between the time of
termination and the initiation time ti. In the absence of a
concrete implementation including realistic computation
and communication latencies, we provide an abstract
measurement of the delay as follows. Let m1 and m2

be messages sent by R. We say m2 is subsequent to m1

if a node sends m2 as a result of receiving m1. The hop
delay is the length of the longest chain of subsequent
messages sent by R.

• Transaction Overhead: Nodes exchange messages to
execute a transaction (ti, ci, si, ri). The transaction over-
head denotes the number of exchanged bits. As before, in
the absence of a concrete implementation, we abstract it
by assuming equal-sized messages for each implementa-
tion and stating the number of messages as the overhead.

• Stabilization Overhead: Analogously to the transaction
overhead, the stabilization overhead corresponds to the
number of bits sent within a certain time interval to
maintain necessary state information, as required by the
implementation of the operation setRoutes() in R. Again,
we abstract from the concrete implementation by stating
the number of messages instead of the number of bits.

The first two metrics heavily impact the perceived quality of
service while the latter two directly relate to network conges-
tion and hence impact the delay. Furthermore, the overhead
determines the load on the user devices.

IV. OUR CONSTRUCTION

In this section, we first describe the key ideas of our
design and then detail the three operations in our routing
algorithm. We present pseudocode for centralized versions of
the algorithms, which allows presenting the algorithms in a
linear compact manner. We then describe how the distributed
versions used within a PBT network differ from the centralized
version.

A. Assumptions

Each user in the PBT network locally maintains the in-
formation of the links with her neighbors. We further as-
sume that users sharing a link can send messages to each
other through an authenticated and confidential communication
channel. Moreover, we assume that there exist a set of nodes,
called landmarks, that are well known to other users in the
PBT network. We note that these assumptions are in tune with
other distributed PBT networks such as SilentWhispers.

Throughout this section, we refer to links that have non-
zero funds in both directions, i.e., links (u, v) and (v, u) with
w(u, v) > 0 and w(v, u) > 0 as bidirectional. u and v have
a unidirectional link if one of the two links does not exist or
has zero funds.

2This inherently assumes a payment algorithm that always succeeds after a
route with enough credit has been found. We thereby abstract away the details
of the payment algorithm.
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B. Overview and Key Ideas

We here describe the key ideas of SpeedyMurmurs with
regard to the operations setRoutes, setCred, and routePay. In
particular, we focus on the predominant differences to existing
algorithms.

setRoutes: In this algorithm, we construct multiple
embeddings, one for each landmark. As mentioned in Sec-
tion II-C, VOUTE offers an algorithm for BFS-based coordi-
nate assignment that assumes unweighted and undirected links.
We modify this algorithm by dividing it into two phases. First,
we only add bidirectional links. In the second phase of the
algorithm, nodes that are not yet part of the spanning tree join
by adding unidirectional links to the spanning tree.

setCred: We first change the weight of the link and then
adapt the embedding accordingly. VOUTE does not provide
any guidance on how to react to changes of weights. In
agreement with setRoutes, we decided to only initiate changes
if the two nodes i) established a new link of non-zero weight
(or set the value of link from 0 to a non-zero value), and
ii) removed a non-zero link (or set its value to 0). If they
established a new link, one of the nodes can choose the other
as a parent if it does not have a parent or the link to its
current parent only has credit in one direction. In contrast, if
a link is removed, one of the nodes has to select a new parent
(and coordinate) if the other node previously was its parent.
Furthermore, any descendants of the affected node have to
change coordinates.

routePay: The routing consists of three steps: i) the
receiver generates anonymous return addresses and sends them
to the sender, ii) the sender randomly splits the transaction
value on |l| paths, one for each landmark, and iii) VOUTE’s
routing algorithm finds a path between sender and receiver,
restricted to links that have sufficient funds. Our algorithm
allows a flexible choice of routes, preferring paths with high
funds. Determining the funds transferred along each path
beforehand enables nodes to block a certain amount of credit
during the probe operation and ensure that the subsequent
payment succeeds without blocking all of the link’s funds.

C. Detailed Description

setRoutes: In the initialization phase, described in
Algorithm 1, we derive the embeddings. Iterating over all
landmarks, Algorithm 1 assigns the landmark coordinate to
be the empty vector (Line 3) and appends the landmark to a
queue (Line 5). The main loop of the algorithm then processes
the queue. In each step, the algorithm removes a node from the
queue (Line 8) and considers all its neighbors. If a neighbor
n does not have a coordinate yet and is eligible to have
one, the algorithm integrates n into the spanning tree, assigns
a coordinate by concatenating the parent coordinate and a
random b-bit number, and appends it to the queue (Lines 14-
17). The criterion determining the eligibility to be part of
the spanning depends on the phase of the algorithm: Initially
(bi = true, Line 6), a node is eligible if the available credit
on the link to and from its potential parent is non-zero. In
the second phase of the algorithm (bi = false), triggered
by an empty queue (Lines 18–21), all nodes can join the
spanning tree. Note that Algorithm 1 does not prevent a child
from choosing a parent such that they do not have funds in

Algorithm 1 setRoutes

1: # Input: Graph G, landmarks l1, . . . , l|L|
2: for i = 1 to |L| do
3: idi(li) = ()
4: q = empty queue
5: add li to q
6: bi = true # first consider nodes with links in both

directions
7: while q is not empty do
8: node = remove head of q
9: for all n: neighbors of node do

10: n stores idi(node)
11: # Assign coordinate if n does not have one
12: if idi(n) is not set then
13: if (w(node, n) > 0 and w(n, node) > 0) or !bi

then
14: parenti(n) = node
15: n chooses random b-bit number r
16: idi(n) = concatenate(idi(node), r)
17: add n to q
18: # Add nodes with unidirectional links
19: if q is empty and bi then
20: bi = false
21: add all nodes n with idi(n) set to q

either direction. As such links do not serve any purpose in
a PBT network, we assume that the network does not allow
them. Alternatively, Algorithm 1 can check if the funds on a
unidirectional link is non-zero before allowing a parent-child
relation. The algorithm terminates once the queue is empty,
indicating that all nodes in a connected graph have coordinates.

In a distributed scenario, there are no central queues.
Rather, nodes send messages to their neighbors when they
join a spanning tree. Each message includes the index i of
the tree and the coordinate idi(node) of the potential parent.
Starting the second phase is tricky in a distributed scenario
and will not be simultaneous for all nodes. Rather, we choose
a time limit τ that represents an upper limit on the time the
initialization should take. If a node n receives a message of
the form (i, idi(node)) from a neighbor node with only one
link of non-zero weight, n waits for time τ . If none of n’s
neighbors with bidirectional links to n indicate that they are
potential parents until the waiting period ends, n selects node
as its parent.

setCred: setCred reacts to a pair of nodes (u, v) that
want to change the value of their shared link to c. Algorithm 2
first determines if the value change should lead to coordinate
changes. In total there are three situations that indicate a need
for a coordinate change:

1) New non-zero unidirectional link: One of the nodes is not
yet part of the tree and should hence choose the other as
their parent (Lines 8–12) to be able to participate in the
routing.

2) New non-zero bidirectional link: u and v share a bidi-
rectional non-zero link and (without loss of generality) u
has only a unidirectional link to its current parent. Then
u should change its parent to v if v has a bidirectional
link to its parent (Lines 13–21). In this manner, a bidi-
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Algorithm 2 setCred

1: # Input: Graph G, u, v ∈ V , new value c
2: old = w(u, v) # Previous value of w(u, v)
3: # check if coordinate change necessary
4: for i = 1 to |L| do
5: reset = null # node whose coordinate should change
6: # case:add link
7: if old == 0 and c > 0 then
8: # If one node does not have a coordinate
9: if idi(v) is not set and idi(u) is set then

10: reset = v
11: if idi(u) is not set and idi(v) is set then
12: reset = u
13: # One node has unidirectional link to parent
14: if reset = null then
15: if w(u, v) > 0 and w(v, u) > 0 then
16: a1 =

(
w(u, parenti(u)) == 0 or
w(parenti(u), u) == 0

)
17: a2 =

(
w(v, parenti(v)) == 0 or
w(parenti(v), v) == 0

)
18: if a1 and !a2 then
19: reset = v
20: if a2 and !a1 then
21: reset = u
22: # case:remove link
23: if old > 0 and c == 0 then
24: if parenti(u) == v then
25: reset = u
26: if parenti(v) == u then
27: reset = v
28: # change coordinates
29: if reset != null then
30: delete coordinates of reset and descendants
31: have nodes choose new parent

rectional connection replaces a unidirectional link in the
spanning tree and increases the likelihood of successfully
transferring funds.

3) Removed link: u is a child of v or v is a child of u
(Lines 24–27). The child node should select a new parent
to increase the number of non-zero links in the spanning
tree and the likelihood of transferring funds.

If one of u or v changes its parent, all descendants remove
their coordinates and inform their neighbors of the removal.
Afterwards, they all choose a new parent and corresponding
coordinate. In agreement with the initialization setRoutes,
nodes first consider only neighbors to whom they have non-
zero links in both directions. However, if a node does not have
such links to any neighbor, it considers links in one direction.
If they have several suitable parents, they choose their parent
randomly from those candidates with the shortest coordinates,
as having short routes to the landmark reduces the lengths of
paths [30]. After choosing a new coordinate, nodes forward
the new coordinate and the tree index to all their neighbors.
We do not present the pseudocode, as it is very similar to
Algorithm 1.

The distributed variant of Algorithm 2 follows the same
principles but requires the exchange of messages for nodes
to communicate information. u and v exchange information

about the link to their parents. Each of them then individually
decides if they want to add or remove the other as a parent.
Starting from the node reset that aims to reset its coordinate,
all descendants inform their neighbors first that they remove
their old coordinate for the tree i. Children of a node in turn
remove their own coordinate and send the respective messages.
In the second phase, nodes select their new coordinates and
inform their neighbors. As the two phases are likely to run
in parallel in the distributed setting, nodes have to ensure that
they do not choose a previous descendant as a parent before
the descendant chooses a new coordinate. However, the nature
of the coordinates makes it easy to prevent such cycles in the
tree by disallowing a node v from choosing a parent whose
coordinate contains v’s previous coordinate as a prefix.

routePay: routePay discovers a set of paths from the
sender to the receiver. It corresponds to the probe operation
in SilentWhispers. Algorithm 3 divides the process into three
steps: i) generation of receiver addresses (Lines 2–5), ii)
splitting the total transaction value c randomly on |L| paths,
and iii) finding paths for all embeddings that can transmit the
required value.

First, the receiver generates anonymous return addresses
add1, . . . , add|L| for all landmarks and sends them to the
sender (Lines 2–5). Second, the sender splits the transaction
value randomly between all paths (Line 7). By defining a per-
path value before routing, we i) avoid the costly multiparty
computation of SilentWhispers and ii) allow the algorithm to
choose between several possible routes. Avoiding the multi-
party computation of the minimum also removes a privacy
leakage, as knowing the minimum value of funds available
on the complete path naturally reveals information about the
individual links.

Third, the route discovery starts at v and each node selects
a neighbor to be the next node on the route. In VOUTE, each
node would select the neighbor with the coordinate closest to
the destination, using the function d̃ that compares a coordinate
with an anonymous return address. However, such a choice
might not be suitable for routing funds as the link might have
insufficient available credit. As a consequence, the routing
only considers links (v, u) with guaranteed available credit
wA(v, u) of at least ci (Line 14). We differentiate between
available credit w(v, u) and guaranteed available credit to
deal with concurrency. wA(v, u) is a lower bound on the
available credit if ongoing probe operations succeed. Initially,
wA equals the actual available credit w. We do not include the
initialization in Algorithm 3 as multiple concurrent executions
of routePay can impact wA(v, u) and the algorithm might
start with wA(v, u) < w(v, u). If a probe operation indicates
that a payment will transmit funds ci along a link (v, u),
we proactively decrease the guaranteed available credit by ci
(Line 17) to keep future routings from using the link unless
they require at most the guaranteed available credit. If the
routing fails, we add ci to wA(v, u) again (Lines 21–23).
The routing fails if a node v cannot find a neighbor with a
coordinate closer to the destination than v’s coordinate and a
link of sufficient guaranteed available credit.

Algorithm 3 achieves correctness, as defined in Section III,
because i)

∑|L|
i=1 ci = c and ii) nodes always select links e with

w(e) ≥ wA(e) ≥ ci on the ith path.
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Algorithm 3 routePay

1: # Input: Graph G, sender src, receiver dst, value c
2: # get addresses
3: for i = 1 to |L| do
4: use VOUTE’s algorithm to generate return address

addi(dst)
5: dst sends addi(dst) to src
6: # value shares for each path
7: src splits c into shares c1, . . . , c|L|
8: # routing
9: pathi = empty list of links

10: for i = 1 to |L| do
11: v = src
12: fail = false
13: while !fail and v != dst do
14: C = {u ∈ N(v) : d̃(idi(u), addi(dst)) <

d̃(idi(u), addi(dst)), wA(v, u) ≥ ci}
15: if C not empty then
16: next = u in C with minimal d̃(idi(u), addi(dst))
17: wA(v, u) = wA(v, u)− ci
18: v = next
19: else
20: fail = true # Routing failed
21: if routing failed then
22: for all i = 1 . . . |L|, e ∈ pathi do
23: wA(e) = wA(e) + ci

In the distributed variant of Algorithm 3, nodes send
messages to the next node on the path, which contain the
address addi and the partial value ci. Nodes report failures and
successes to the sender by sending messages along the reverse
path. To account for messages getting lost, nodes also reset
wA if a payment operation does not follow a probe operation
within a certain time.

D. Parameters

Several parameters govern the performance of the above
routing algorithm. First, the number |L| of landmarks deter-
mines the number of returned paths. The transaction and stabi-
lization overhead increases roughly linearly with |L| as routing
and stabilization is required for each landmark. Similarly,
the delay corresponds to the longest route in any embedding
and hence is likely to increase with |L|. The impact of |L|
on the success ratio highly depends on the scenario. The
second parameter is a, the number of transaction attempts.
A sender s can attempt to perform a transaction up to a
times. Only if all attempts fail, s considers the transaction
failed. s chooses the interval between two consecutive attempts
uniformly at random within an interval of length tl. A repeated
transaction attempt executes the above routing algorithm for
the same sender, receiver, and value but uses different shares
c1, . . . , c|L|. In addition to the parameters |L|, a, and tl, the
choice of the landmarks impacts the performance. Commonly,
landmarks are nodes corresponding to financial institutions
and hence have a large number of links, possibly leading to
spanning trees of a lower depth and a higher performance. We
characterize the impact of these parameters in our performance
evaluation.

E. Privacy Analysis

Next, we argue that SpeedyMurmurs achieves the privacy
goals proposed in Section III-C.

Value Privacy: Informally, we say that a PBT network
achieves value privacy if the adversary cannot determine the
value c of a routePay(c, u, v) operation between two non-
compromised users u and v, if the adversary is not sitting
in any of the involved routing paths.

SpeedyMurmurs is a distributed PBT network and, in
particular, the routePay is defined such that only users in the
paths between the sender and receiver are involved. Therefore,
if the adversary does not compromise any such users, she
does not get any information about the routed value (because
the point-to-point communications are encrypted) and thereby
value privacy is achieved.

An alternative scenario appears when the adversary cor-
rupts users in some of the paths between sender and receiver,
but not all. In such a case, we cannot prevent the adversary
from estimating c. As we have ci ≥ 0 for all i = 1 . . . |L|,
knowing a subset of these values naturally reveals information
about the total value c, namely that c ≥ ci. Moreover, as
SpeedyMurmurs shares the value c uniformly among the paths
and uses only positive shares, an adversary can estimate c as
|L| ∗ ci upon observing ci.

Sender Privacy: Informally, we say that a PBT network
achieves sender privacy if an adversary cannot determine the
sender u in a routePay(c, u, v) operation. The adversary might
compromise intermediate users on the paths discovered by
routePay(c, u, v) but does not compromise u or v.

An attacker sitting on the path between sender s and
receiver r might receive an anonymous routing address addi
(e.g., the adversary managed to corrupt the sender’s neighbor).
Nevertheless, as SpeedyMurmurs is a distributed PBT network,
the adversary cannot determine whether the actual sender is s
or another user s′ connected to s through a direct link or a
path of non-compromised users. Sender privacy follows from
the corresponding proofs for VOUTE [29].

Receiver Privacy: Informally, we say that a PBT
network achieves receiver privacy if an adversary cannot
determine the receiver v in a routePay(c, u, v) operation. The
adversary might compromise intermediate users on the paths
discovered by routePay(c, u, v) but does not compromise u or
v.

As before, the adversary compromising the user before
the receiver r might relay to r an anonymous return address.
Nevertheless, as shown in the evaluation of VOUTE, an
anonymous return address does not leak the corresponding user
in the network. Therefore, the adversary cannot fully determine
yet if r is the actual receiver, or the routing message is intended
for another receiver r′ connected to r through a direct link or
a path of non-compromised users.

F. Summary

In this section, we introduced SpeedyMurmurs, which
proposes a privacy-preserving routing algorithm for PBT net-
works. Our key contributions in modifying VOUTE to the sce-
nario of credit networks are i) the use of a two-phase construc-
tion algorithm to account for the existence of unidirectional
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links (Algorithm 1), ii) the identification of criteria on when
to apply on-demand maintenance (Algorithm 2), iii) the design
of a path discovery algorithm that can adaptively choose links
based on both the available credit and the coordinates of the
neighboring nodes and can handle concurrency (Algorithm 3).
Apart from using embedding-based routing, SpeedyMurmurs
distinguishes itself from SilentWhispers by splitting the credit
between paths before the path discovery. In this manner, nodes
can base their forwarding decisions on the amount of credit
they should forward rather than only their neighbors’ distances
to the destination. On the other hand, distributing funds before
the path discovery prevents the algorithm from taking the
overall available funds on the path into consideration. In the
next section, we evaluate the impact of our design decisions
on efficiency and effectiveness, analyzing in particular how the
order of routing and fund distribution relates to the success
ratio.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Speedy-
Murmurs in comparison to the related work, in particular
SilentWhispers’ landmark-centered routing.

More precisely, we aim to answer the following research
questions:

• How do SpeedyMurmurs and SilentWhispers perform
with regard to success ratio, delay, and overhead using
a real-world dataset?

• SpeedyMurmurs and SilentWhispers differ in three major
areas—routing algorithm, random credit assignment, and
dynamic stabilization. What is the impact of each of these
modifications on the above performance criteria?

• How do these results compare to the performance of other
approaches?

• What is the impact of the landmark selection, the number
of trees, and the number of transaction attempts?

• How does the long-term evolution of the credit network
affect the performance?

We start by describing our simulation model and datasets.
Afterwards, we specify the parameters of our simulation.
Finally, we present and discuss our results.

Generally, our simulation executes the routing algorithm
and performs the payment (if successful). We include the
payment to realistically assess the stabilization overhead due
to link changes. However, we did not implement any security
measures that are usually part of the payment because they
do not affect the routing algorithm and its performance. In
particular, we do not execute the link setup algorithm that
ensures that neighboring nodes agree on the value of their link
and later can settle disputes by providing signed statements of
the changes.

A. Simulation Model

We extended GTNA [31], a framework for graph analysis,
to include our credit transaction mechanisms. In particular,
GTNA offers templates for routing algorithms and perfor-
mance metrics. We added functionality specific to PBT net-
works, in particular the functionality to dynamically update
link weights.

Initially, our simulation constructs a credit network with
nodes and links according to a provided description. After-
wards, we simulate a sequence of events in the credit network.
A list of transactions, changes to links, and periodic re-
computations of the spanning tree (only required for Silent-
Whispers), ordered by their temporal occurrence, determined
the sequence of events. In the absence of realistic latency
and bandwidth models, we did not model concurrency in
our simulation. The simulation executed each event, including
resulting changes to the spanning trees, before starting the next
event.

We implemented two simulation modes. First, we consid-
ered a static credit network. In each step, the simulation exe-
cuted a transaction and subsequently repaired the spanning tree
if dynamic stabilization was applied. Afterwards, it returned
the credit network to its original state. Second, we considered
a dynamic network evolving over time. Transactions, node
churn, and modifications of the extended credit changed the
structure of the network and the weights on the links. While the
second mode was more realistic, it prevented a straightforward
comparison of different approaches for individual transactions
due to the differences in state at the time of the transaction.

We implemented the routing and stabilization algorithms of
SilentWhispers and SpeedyMurmurs as specified in Sections II
and IV, respectively. However, we disregard the cryptographic
details for our evaluation, as they do not affect our performance
metrics. Instead, the sender and receiver both send only
one message to each landmark forwarded by all nodes on
the shortest path to the landmark. In our implementation of
SilentWhispers, each landmark then sends a message to all
remaining landmarks, which is forwarded along the shortest
paths, to account for the multi-party computation. When com-
bining embedding-based routing with multi-party computation,
the receiver sends messages to all landmarks. In addition
to enabling the evaluation of each individual modification,
the alignment of the two designs also resulted in a fairer
comparison of overheads, as the original SilentWhispers sends
all elements of a signature chain individually and thus results
in a higher overhead as compared to sending them in one
message. As SilentWhispers’ authors do not specify how the
sender decides on the amount of partial credit ci assigned to
the ith path, we decided to divide the total credit randomly
between paths in agreement with the available minimum. In
other words, if the sum of all minimal values was at least equal
to the total transaction value c, we first divided c randomly
upon the paths. We then randomly re-assigned all credit that
exceeds the minimal value along a path to the remaining paths.
We repeated the re-assignment step until the partial credit of
each path was at most equal to the minimal credit on the path.
During the simulation, we recorded all information necessary
to derive the performance metrics described in Section III.

For SpeedyMurmurs and SilentWhispers, we consider the
following parameters: i) the number of trees |L|, ii) the
number of attempts a that nodes try to perform a transaction
before declaring it failed, iii) the maximal interval tl between
two attempts for the same transaction, and iv) the interval
epoch between two periodic re-computations of the trees for
SilentWhispers. For comparison, we expressed the stabilization
overhead for SpeedyMurmurs in stabilization messages per
epoch. In addition to the above parameters, we provided two
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approaches for choosing landmarks: choosing the nodes of
maximal degree or choosing random nodes. Here, we define
the maximal degree of a node as the number of connections
with positive available credit in both directions. For the evolv-
ing credit network, we chose the nodes with the highest initial
degree.

We implemented distributed versions of the Ford-Fulkerson
max-flow algorithm [5] and tree-only routing for comparison.
Tree-only routing only uses links in the spanning tree but
chooses the shortest path rather than always passing through
the landmarks. For Ford-Fulkerson, we replaced the centralized
computation with a distributed version that discovers residual
flows using a breadth-first search. By adding tree-only routing,
we evaluate all three tree-based routing schemes displayed in
Figure 1, with SilentWhisper being an instance of landmark-
centered routing and SpeedyMurmurs representing embedding-
based routing.

B. Dataset

We obtained datasets from crawling the PBT network
Ripple [1]. In particular, we obtained crawls of the complete
network from November 2016 and all link modifications and
transactions since its creation in January 2013. Based on these
crawls, we derive datasets for both our simulation modes,
the static and evolving network. In the following, we first
describe our crawling method, followed by post-processing of
the crawled data. Last, we present properties of the resulting
datasets.

Dataset Processing: We restricted our evaluation to
funded accounts: a Ripple account is funded when it owns a
certain amount of XRP.3 In April 2017, a user needed 20 XRP
to fund an account. In this paper, we disregard transferring
credit from one currency to another. Hence, we converted all
values to US dollars and deleted all links and transactions
in non-fiat currencies. After cleaning the dataset according
to these three rules, we derived the credit network C ′

Nov16
for November 2016 and lists of both transactions and link
value changes, sorted in temporal order. Based on the resulting
transaction and link modifications lists, we then generated
the credit network C ′

0 at the time of the first transaction as
a starting point of our second mode, the evolving network.
As our data does not reveal when nodes join and leave the
network, we included all crawled nodes and links in our initial
credit network but set the weight of links (u, v) that come
into existence at a later point to 0. During the spanning tree
construction, such links are ignored.

We resolved three inconsistencies between our model and
the datasets. In rare cases, Ripple exhibits invalid credit ar-
rangements; i.e., links (u, v) such that their weight exceeds the
upper limit of granted credit. Usually, such occurrences result
from changes to the extended credit agreement. We deleted
all such links from the dataset. Furthermore, we removed self-
transactions from the dataset, as they do not require routing
algorithms according to our model. Last, landmark routing
requires paths between all nodes and the landmarks, so that
we restricted our evaluation to the giant component. These
processing steps turned the initial snapshots C ′

Nov16 and C ′
0

into our processed datasets CNov16 and C0. We obtained

3XRP is the symbol of the Ripple currency.

the final datasets by restricting the previous lists to entries
involving only nodes in the final snapshots.

Final Datasets: C0 contained 93,502 nodes and a total
of 331,096 links, whereas CNov16 contained 67,149 nodes and
199,574 links. The reason for the disparity is that C0 contained
all active links and their adjacent nodes for a period of more
than 3 years, whereas CNov16 was a snapshot of the network on
one particular date. Our final transaction lists had 970,472 and
692,737 entries for C0 and CNov16, respectively. We recorded
a total of 652,216 link modifications for the evolving network
C0. The datasets and the code are publicly available.4

C. Simulation Setup

Our first simulation setup realized the static simulation
mode on the basis of the snapshot CNov16. We repeated simu-
lations 20 times, using a different set of 50,000 transaction for
each run. We chose these transactions pseudorandomly, seeded
by the run number, from all transactions that were successful
using Ford-Fulkerson, a total of 331,642 transactions. We then
evaluated all 8 possible combinations of routing algorithms
(landmark routing or embedding-based), credit assignments
to paths (multi-party computation or random assignment),
and stabilization algorithms (periodic or on-demand) for the
parameters |L| = 3 and a = 2. We chose epoch = 1000,
meaning we recomputed spanning trees each 1000 transactions.
We choose the re-queuing interval as tl = 2 · epoch. For the
landmark selection, we considered both options: random and
highest degree. Note that random choices were deterministic
in the run number, ensuring comparability of all approaches
under the same circumstances. For comparison with related
approaches, we evaluated two versions of tree-only routing,
using SilentWhispers’ multi-party computation and periodic
stabilization for the first version and SpeedyMurmurs’ random
credit assignment and on-demand stabilization for the second.
We then evaluated the impact of the different parameters for
SilentWhispers and SpeedyMurmurs. We vary the number of
landmarks |L| between 1 and 7 and the number of attempts a
between 1 and 10.

Our second simulation setup realized the evolution of the
network under different algorithms: Ford-Fulkerson, Silent-
Whispers, and SpeedyMurmurs. Starting from the initial net-
work C0, the simulation initiated the transactions and changes
link values according to the dataset. For SilentWhispers and
SpeedyMurmurs, we set |L| = 3, a = 2, epoch = 1000δAv ,
and tl = 2δAv with δAv denoting the average time between
two transactions. In this manner, an epoch roughly corresponds
to a day. We chose landmarks of the highest degree for
SpeedyMurmurs and SilentWhispers. As Ford-Fulkerson is a
deterministic algorithm, we only executed it once but averaged
our results for SpeedyMurmurs and SilentWhispers over 20
runs.

D. Results

We start by comparing a wide range of algorithms for
the static simulation setup. Table I displays the results for
different combinations of the three proposed modifications to
SilentWhispers as well as our implementations of tree-only
routing and Ford-Fulkerson. Note that Ford-Fulkerson is a

4https://crysp.uwaterloo.ca/software/speedymurmurs/
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TABLE I: Performance of different transaction schemes in the static scenario, varying the routing algorithm (LM-Landmark,
GE-greedy embedding, TO-Tree-only), the stabilization method (PER-periodic, OND-on-demand), the assignment of credit on
paths (MUL-multi-party computation, RAND-random), and the landmark selection (HD-highest degree, RL-random landmark)
for five metrics: success ratio: fraction of successful transactions (higher is better), delay: longest chain of messages (lower
is better), transaction: messages sent per transaction (lower is better), path length: length of discovered paths between sender
and receiver (lower is better), stabilization: messages for stabilizing the trees sent per epoch (lower is better). SilentWhispers
corresponds to the setting LM-MUL-PER whereas SpeedyMurmurs is GE-RAND-OND.

Setting Success Ratio Delay Transaction Path Length Stabilization
(Hops) (Messages) (Hops) (Messages)

SilentWhispers-HD 0.651± 0.005 15.01 ± 0.08 82.0 ± 0.2 5.30 ± 0.01 598722 ± 0
LM-MUL-OND-HD 0.62 ± 0.03 14.7 ± 0.5 81 ± 2 5.3 ± 0.1 8000000 ± 2000000
LM-RAND-PER-HD 0.09 ± 0.01 8.3 ± 0.1 35.1 ± 0.5 3.23 ± 0.05 598722 ± 0
LM-RAND-OND-HD 0.09 ± 0.09 9 ± 1 37 ± 4 3.4 ± 0.4 2000 ± 2000
GE-MUL-PER-HD 0.908± 0.001 11.52 ± 0.03 49.0 ± 0.1 1.951± 0.003 598722 ± 0
GE-MUL-OND-HD 0.905± 0.004 11.5 ± 0.2 49.0 ± 0.5 1.954± 0.007 4000 ± 4000
GE-RAND-PER-HD 0.913± 0.001 6.016± 0.009 18.30± 0.04 1.867± 0.003 598722 ± 0
SpeedyMurmurs-HD 0.906± 0.006 6.02 ± 0.04 18.3 ± 0.1 1.87 ± 0.01 300 ± 300
TO-SW-HD 0.863± 0.003 15.9 ± 0.1 81.9 ± 0.3 3.17 ± 0.01 598722 ± 0
TO-SM-HD 0.54 ± 0.04 6.7 ± 0.3 23.5 ± 0.7 2.01 ± 0.07 5000 ± 5000
Ford-Fulkerson 1.00 ± 0.00 49500 ± 900 49500 ± 900 3.2 ± 0.1 0 ± 0
SilentWhispers-RL 0.1 ± 0.2 15 ± 2 130 ± 10 7.6 ± 0.6 598722 ± 0
SpeedyMurmurs-RL 0.912± 0.007 5.99 ± 0.06 18.2 ± 0.2 1.863± 0.009 1000 ± 1000

deterministic algorithm but its delays and overheads vary as
the set of transactions varies between runs.

Impact of Design Decisions: As expected, greedy em-
beddings led to shorter paths due to finding shortcuts between
different branches of the tree. Hence, all settings using greedy
embeddings, i.e., rows starting in “GE-” and SpeedyMurmurs,
exhibited lower delays and transaction overheads than the
corresponding landmark-based algorithms. Indeed, greedy em-
beddings reduced the path length and the transaction overhead
by nearly a factor of 2. Greedy embeddings also increased the
success ratio due to the shorter paths and the lower probability
of encountering a link with low available credit.

The impact of the random assignment of credit, used by
SpeedyMurmurs and all algorithms with “RAND” in their
name, was less clear-cut: While removing the need to involve
landmarks into the routing process reduced the delay and the
transaction overhead for all parameter settings, the impact on
the success ratio differed between embedding-based and land-
mark routing. When combined with landmark routing, random
credit assignments resulted in a definite drop in success from
more than 60% to only 8%. The reason for the low success
ratio was the high probability of encountering at least one link
with insufficient credit to satisfy the random assignment. In
contrast, greedy embeddings exhibited much shorter paths and
the flexibility to potentially choose between several neighbors.
These two properties negated the disadvantageous impact of
the random credit assignment, so that greedy embedding in
combination with random assignment resulted in the same
success ratio of 91% as in combination with multi-party
computation.

On-demand stabilization reduced the stabilization overhead
(abbreviated by Stabilization in Table I) drastically: While
rebuilding the spanning trees periodically, as applied by Silent-
Whispers and all algorithms with “PER” in their name, resulted
in more than half a million messages per epoch, on-demand
stabilization only required a few thousands of messages, as

shown in the last column of Table I. On-demand stabilization
induced high variance because the value of links close to the
root of a spanning tree rarely drops to 0 but incurred enormous
overhead in these rare occurrences. The simulation showed a
clear advantage of on-demand stabilization. We admit that the
considerable advantage of on-demand stabilization is partially
due to lack of link value changes and actual dynamics in
the static simulation. In the second part of this section, we
therefore evaluate the stabilization overhead in a dynamic
environment.

Comparison to Other Algorithms: We compared Silent-
Whispers and SpeedyMurmurs with tree-only routing and
Ford-Fulkerson based on the results in Table I. As expected,
Ford-Fulkerson exhibited prohibitive delays and transaction
overheads. The fact that Ford-Fulkerson also results in a longer
average path length seems counterintuitive at first. However,
the result was a side effect of Ford-Fulkerson discovering long
paths to maximize the available credit that the other approaches
failed to discover. As illustrated in Fig. 1 and detailed in
Sec. II, tree-only routing finds the shortest route in the span-
ning tree, possibly without passing a landmark, but does not
include links that are not contained in the tree. Thus, tree-
only routing is a compromise between SilentWhispers’ routing
algorithm and embedding-based routing. As a consequence, the
performance results when using only tree links are in between
the performance of SilentWhispers and SpeedyMurmurs.

Impact of |L| and a: Next, we evaluate the impact
of different configuration parameters on the performance. As
indicated in the last two rows of Table I, choosing ran-
dom landmarks did not considerably affect the performance
of SpeedyMurmurs but reduced the performance of Silent-
Whispers due to the existence of longer paths to a landmark
with few connections. In contrast, increasing the number of
trees |L| affected the success ratio of SpeedyMurmurs nega-
tively and SilentWhispers positively, as Fig. 2a indicates. The
reason for the observed decrease in success was the increased
likelihood that at least one path did not have sufficient credit.
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Fig. 3: Comparing SpeedyMurmurs and SilentWhispers in a dynamic setting based upon Ripple transaction and link changes
from 2013 to 2016 on per-epoch scale; success is computed as the ratio of the actual success ratio and the success ratio of the
Ford-Fulkerson algorithm as a baseline; for c), we present moving averages over 50 epochs to increase readability

An increased |L| further increased the delays, as shown in
Fig. 2b. The impact was more pronounced for SilentWhispers
because landmarks had to wait until all messages for the multi-
party computation arrived. The number of attempts a had a
slight positive effect on the success ratio, as shown in Fig. 2c.
Yet, as the transaction overhead is linear in the number of
attempts, the slight increase may not warrant multiple attempts.

For all algorithms but Ford-Fulkerson, the success ratio
was considerably below 100%. It stands to reason that a lot of
users might not be willing to accept a failure rate of 10%
or more. Note that a failure to route does not reduce the
funds of any user, so there is no loss in funds associated with
a routing failure. Furthermore, in a non-static environment,
users can retry the transaction at a later point in time after
the network has sufficiently changed for it to work. If neither
failure nor waiting is an option, we could apply Ford-Fulkerson
on failure. By reducing the transactions that require Ford-
Fulkerson to 10%, we still considerably improve the efficiency
in comparison to a network relying exclusively on Ford-
Fulkerson at the price of a slight increase in delay due to the
preceding use of SpeedyMurmurs. In addition, we hope that
with increasing popularity, both the connectivity of the PBT
networks and the amount of available funds increase beyond
the current state of the Ripple network, which is bound to
entail a higher probability of success.

Impact of Dynamics: We evaluated the impact of
dynamics on the performance of SpeedyMurmurs and Silent-
Whispers. As stated above, the impact of dynamics is par-

ticularly of interest to decide if on-demand stabilization is
indeed more efficient than periodic stabilization. To better
comprehend the reasons underlying our results, Fig. 3a dis-
plays the number of transactions and link changes per epoch
for the Ripple dataset. While the number of transactions did
not vary greatly over the period of three years, link creations
and modifications were frequent in some short intervals but
rare during the remaining observation period. The frequency
of link changes directly relates to the stabilization overhead
of SpeedyMurmurs, as indicated by Fig. 3b. Whereas the
stabilization overhead was usually below 100 messages per
epoch, the overhead increased to about 109 messages during
periods of frequent change. Note that only the first two of the
four batches of link changes resulted in a drastically increased
need for stabilization. After the first two batches, spanning
trees had formed and new link additions mostly created short-
cuts that did not require changes to the trees. In contrast, the
stabilization overhead of SilentWhispers only depended on the
number of edges in the network and hence increased as the
graph grows over time. During intervals of frequent change,
the stabilization overhead of SilentWhispers was considerably
lower than SpeedyMurmurs’ stabilization overhead. However,
during ‘normal’ operation, SilentWhispers’ stabilization over-
head exceeded the overhead of SpeedyMurmurs by more than
2 orders of magnitude. We evaluated the success in relation
to Ford-Fulkerson and hence divided the actual success ratio
of each epoch by the success ratio of Ford-Fulkerson for the
corresponding epoch. As can be seen from Fig. 3c, the success
could exceed 1 if an alternative routing algorithm exhibited
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a higher success ratio. Note that higher success ratios were
indeed possible due to the fact that different routing algorithms
resulted in different payments and hence different network
states. Different network states implied a different set of
possible transactions, so that a transaction could fail for Ford-
Fulkerson but succeed for SilentWhispers or SpeedyMurmurs.
In comparison, SpeedyMurmurs and SilentWhispers achieved
similar success ratios for most of the time; however, at the
end of the simulation interval, SilentWhispers outperformed
SpeedyMurmurs. The sudden increase in success correlates
with the addition or change of many links, as can be seen from
Fig. 3a. The additional links increase the density of the graph,
leading to shorter paths, and hence a higher success probability.
The fact that SilentWhispers achieves a higher success ratio
than SpeedyMurmurs could be due to the tree structure:
SilentWhispers maintains breadth-first search trees whereas
SpeedyMurmurs initially constructs breadth-first search trees
but does not change the parent of a node if a new neighbor
offers a shorter path to the root. The longer paths to the root
could have negative effects on the probability of success. As
the actual success ratio of all considered algorithms is low
during later epochs, e.g., frequently below 5%, the result might
be an artifact of our dataset and post-processing method.

We hence answered our five initial research questions:

• SpeedyMurmurs achieved a higher performance than
SilentWhispers with regard to all considered metrics for
the static scenario.

• On-demand stabilization and embedding-based routing
had a positive effect on all 5 performance metrics. In
contrast, the use of random credit assignment might
decrease the success ratio slightly. However, when used
in combination with embedding-based routing, the effect
was mostly negated.

• As expected, Ford-Fulkerson usually achieved a higher
success than both SpeedyMurmurs and SilentWhispers.
However, the algorithm resulted in an enormous trans-
action overhead, exceeding the overhead of the other
algorithms by 2 to 3 orders of magnitude.

• An increased number of trees or attempts to perform a
transaction did not considerably increase the success ratio
of SpeedyMurmurs but incurred increased overheads.

• The evolution of the PBT network affects the performance
of SpeedyMurmurs considerably. Stabilization overhead
and success ratio vary considerably depending on the
frequency of transactions and link changes.

The dynamic evaluation suggests working on the design of an
alternative spanning tree maintenance algorithm. In particular,
the results raise the question of suitable criteria for dynami-
cally switching between on-demand and periodic stabilization.
Indeed, as SilentWhispers is more efficient during periods of
frequent change but results in higher overhead otherwise, such
a switching mechanism could further reduce the communica-
tion overhead and hence increase scalability.

VI. RELATED WORK

Maximizing the set of possible transactions in a credit
network is NP-hard [7]. Instead, many existing systems have
opted for considering one transaction at a time and applying the
max-flow approach [5] as a routing algorithm. Nevertheless,

existing algorithms [4] run in O(V 3) or O(V 2 log(E)) time
and hence do not scale to a growing number of users and
transactions [22], [35].

The pioneering credit networks Ripple and Stellar main-
tain their entire PBT networks on public blockchain ledgers.
Although this information can be leveraged to perform routing
efficiently, it also trivially leaks sensitive information such as
credit links/relationships and financial activity in the form of
transactions. Instead, current proposals rely on a decentralized
PBT network requiring no public log.

Prihodko et al. recently proposed Flare [23], a routing
algorithm for the Lightning Network, a network of Bitcoin
payment channels among Bitcoin users that enables off-chain
transactions [21]. In Flare, all nodes keep track of their k-
neighborhood; i.e., nodes at a hop distance of at most k and
all links between them. In addition, each node maintains paths
to a set of nearby beacon nodes.

This routing algorithm reveals the weight of all links in
the k-neighborhood, usually for k ≥ 3. This results in a
privacy concern as the weight of a link between two users
is exposed to users other than those two. Furthermore, nodes
spread all updates to the k-neighborhood, meaning each credit
change results in possibly hundreds of messages, which is
highly inefficient for frequent transactions and hence changes
in available credit.

Canal [35] presents the first efficient implementation of
tree-only routing applied to looking for paths in credit net-
works. A trusted central party computes the shortest paths
in the spanning trees between sender and receiver. If these
paths provide enough credit to settle a transaction, the routing
terminates successfully. Otherwise, it fails. In the face of
network dynamics, the central server re-computes spanning
trees constantly. Due to maintaining a central server, Canal [35]
has severe privacy and security drawbacks.

PrivPay [17] increases the privacy of Canal by using trusted
hardware at the central server. However, PrivPay relies on a
similar landmark technique as Canal and is also a centralized
solution, therefore the scalability is still low and the issue
of a single point of failure remains unsolved. Additionally,
the PrivPay paper introduces for the first time the notions of
value privacy and sender/receiver privacy for payments in a
credit network. In this work, we define the privacy notions for
routing in a PBT network as a building block not only for
credit networks but also for any PBT network.

SilentWhispers [11] uses landmark routing in a fully
distributed credit network. Both sender and receiver send
messages in the direction of the landmarks, which constitute
rendezvous nodes. In other words, paths in SilentWhispers
are concatenations of the sender’s path to a landmark and
the path from said landmark to the receiver. All paths pass a
landmark, even if sender and receiver happen to be in the same
branch, potentially leading to performance issues. However,
as we discuss throughout this paper, SpeedyMurmurs, the
routing algorithm proposed in this work, outperforms the
routing approach proposed in SilentWhispers while achieving
the privacy notions of interest.

Malavolta et al. [12] recently proposed Rayo and Fulgor,
two payment-channel networks (i.e., PBT networks) that pro-
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vide a necessary tradeoff between privacy and concurrency.
Their study of concurrency could be leveraged to extend how
concurrency is handled in SpeedyMurmurs. Nevertheless, they
do not tackle the path selection problem. Thus, SpeedyMur-
murs is an excellent candidate to complement Rayo and Fulgor.

Summary: Existing routing approaches often disregard
privacy. Most of them require centralization or shared public
information; SilentWhispers is the only existing distributed
PBT network focusing on privacy. However, it relies on
a distributed landmark routing technique that is potentially
inefficient. Our in-depth performance and privacy evaluation
shows that SpeedyMurmurs provides higher overall perfor-
mance when compared to state-of-the-art routing approaches,
while achieving the privacy notions of interest.

VII. CONCLUSION AND FUTURE WORK

In this work, we design SpeedyMurmurs, an efficient
routing algorithm for completely decentralized PBT networks.
Our extensive simulation study and analysis indicate that
SpeedyMurmurs is highly efficient and achieves a high prob-
ability of success while still providing value privacy as well
as sender/receiver privacy against a strong network adversary.
As these privacy notions are essential for PBT applications,
SpeedyMurmurs is an ideal routing algorithm for decentralized
credit networks and payment channel networks, as well as for
emerging inter-blockchain algorithms.

As our results indicate that on-demand and periodic stabi-
lization are suitable for different phases of a PBT network’s
evolution, future work can extend upon our results by in-
vestigating the option of dynamically switching between on-
demand and periodic stabilization.
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