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Abstract We identify a generic construction of cryptosys-
tems based on the subset sum problem and characterize the
required homomorphic map. Using the homomorphism from
the Damgård-Jurik cryptosystem, we then eliminate the need
for a discrete logarithm oracle in the key generation step of
the Okamoto, Tanaka and Uchiyama scheme to provide a
practical cryptosystem based on the subset sum problem. We
also analyze the security of our cryptosystem and show that
with proper parameter choices, it is computationally secure
against lattice-based attacks. Finally, we present a practical
application of this system for RFID security and privacy.

Keywords public-key cryptography · subset-sum problem ·
Damgård-Jurik · RFID security and privacy · Okamoto-
Tanaka-Uchiyama

1 Introduction

Knapsack Cryptosystems
Knapsack cryptosystems, or more accurately, subset sum
problem (SSP)-based cryptosystems, are the most well-studied
cryptosystems based on NP-complete problems. We refer
readers to a survey by Lai [17] for a detailed discussion and
cryptanalysis of many of them. In 2000, Okamoto, Tanaka
and Uchiyama [24] presented an SSP-based cryptosystem
(the OTU scheme), which combines good features of the
multiplicative Merkle-Hellman [20] and the Chor-Rivest [4]
cryptosystems to overcome known attacks on SSP-based cryp-
tosystems. A motivation behind this system is to define a
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(post-)quantum public key cryptosystem, as many classi-
cal public key cryptosystems (PKCs) are breakable using
Shor’s algorithm [31] on a quantum computer. Further, its
use of low-weight subsets reduces its public-key size from
Ω(n2 logn) to o(n2). Recent lattice-based attacks [13,22,
25] raise serious theoretical questions about the security of
the OTU scheme; however, given the very large polynomial
complexity of the LLL algorithm, for moderate values of n,
lattice-based attacks can be thwarted in practice while re-
taining a reasonable public key size (see [22, Sec. 7] for
practical examples).

RFID Security and Privacy
RFID (Radio-Frequency IDentification) is a technology for
automated identification of objects and people. When com-
pared with its predecessor—barcodes—RFID tags offer sig-
nificant improvements in efficiency through unique object
identification rather than categorical recognition, and through
fully automated reading. On the other hand, ubiquitous use
of RFID tags raises a significant privacy concern of clandes-
tine tracking and inventorying [15]. Although data and com-
munication privacy using public key encryption are solved
problems in the cryptographic literature with schemes such
as RSA and Diffie-Hellman, all of those protocols are be-
yond the computational capabilities of the majority of RFID
tags.

A variety of security and privacy protocols have been
suggested for RFID tags (see Avoine’s web resource [1] for
a detailed list). However, most of them have some known
weakness such as a shared symmetric key between a RFID
reader and many RFID tags, or the requirement of exhaus-
tive database search for ID management. All of these weak-
nesses in the existing RFID security and privacy schemes
can easily be overcome using a public key encryption sys-
tem. In such a system, a RFID tag encrypts the identifica-
tion information using a pre-installed public key of the valid
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RFID readers, which decrypts the transferred message to se-
curely obtain identification information of the tag. However,
the computational requirements of encryption in cryptosys-
tems based on the discrete logarithm and integer factoriza-
tion problems are beyond the capacity of these resource-
constrained devices.

Along with its significance to post-quantum cryptogra-
phy, the OTU scheme is also suitable for resource-constrained
RFID devices; its public-key size is reasonable for active
RFID tags and encryption in this scheme only involves a
very small number of integer additions. Still, practical use
of the OTU scheme is not possible in the near future, as it
requires a (quantum) oracle to solve arbitrary discrete loga-
rithm problems (DLP) in the key generation step. This pa-
per eliminates the requirement of a DLP oracle in the OTU
scheme and makes the resulting scheme feasible for practi-
cal use in identification of resource-constrained devices.

Our Contributions
As our major contribution, we present the generic construc-
tion of SSP-based cryptosystems, where the finite field DLP
computation is replaced by an additive homomorphism with
certain properties. We then show that a specialization of the
homomorphic map of the Damgård-Jurik generalization [9]
of the Paillier cryptosystem [26] provides the required ho-
momorphism and define a concrete realization of our scheme
with polynomial-time key generation on classical comput-
ers. Finally, we show the computational inapplicability of
lattice-based attacks for our chosen key sizes and define a
computation-constrained identification protocol for RFID chips.

In the next section, we summarize the important SSP-
based cryptosystems and discuss the densities of the corre-
sponding SSP instances in relation to lattice-based attacks.
In Section 3, we present our generic SSP-based cryptosys-
tem and use the Damgård-Jurik homomorphism to provide
a realistic SSP-based scheme in Section 4. The security of
our scheme is discussed in Section 5 and Section 6 presents
a practical application of our scheme for RFID security and
privacy. We conclude our discussion in Section 7.

2 Preliminaries

2.1 SSP in Cryptosystems

Definition 1 (Subset Sum Problem) Let A = {a1, . . . ,an}
be a set of positive integers. Given the set A and an in-
teger c, find A ′ ⊆ A (if such a subset exists) such that
c = ∑ai∈A ′ ai.

In the key generation step of an SSP-based PKC, a set
A of size n is computed using a private key and published
as a public key along with some other scheme-specific pa-
rameters. A sender chooses a subset A ′ ⊆ A uniquely as-
sociated to a plaintext M via a binary encoding, computes

the subset sum c = ∑ai∈A ′ ai and sends c as the ciphertext.
The intended receiver, knowing the private key, converts this
subset sum instance (A ,c) to an efficiently solvable prob-
lem and recovers the plaintext M by solving it.

To be useful in cryptography, any subset sum (or cipher-
text c) should not have two different subsets associated with
it, as in that case, a unique decryption would not be possi-
ble. The associated specialization of the SSP is known as the
unique subset sum problem.

Definition 2 (Unique Subset Sum Problem) Let A = {a1,

. . . ,an} be a set of positive integers such that sum of every
subset is unique. That is, for any A1,A2 ⊆A , if ∑ai∈A1

ai =

∑a j∈A2
a j, then A1 = A2. Given the set A and an integer c,

find A ′⊆A (if such a subset exists) such that c=∑ai∈A ′ ai.

As unique SSPs are a proper subset of (general) SSPs, given
an oracle to solve the SSP, one can solve a unique subset-
sum instance; thus, Unique Subset Sum≤p Subset Sum.
A reduction in other direction seems to be unlikely, as decid-
ing if a subset sum instance is a unique subset sum instance
is itself PNP-complete [27]. Separation between these two
problems is further supported by the difference in their den-
sities and subsequent susceptibility of many instances of the
unique SSP to lattice-based attacks; we discuss these issues
next.

2.2 SSP Density and Lattice-Based Attacks

Although the subset-sum problem is NP-hard in the worst
case, not all instances of the SSP are equally difficult. The
applicability of known attacks on SSP-based cryptosystems
is determined by a metric called the subset sum density [16].

Definition 3 (Density) The density D of a subset sum in-
stance with set A = {a1, . . . ,an} is the ratio of the size
of the set A to the size of the largest element in it. D =

n/ log2 (maxA ), where maxA = maxi(ai).

The density D for a general subset sum instance can take
any non-negative value; however, for a unique subset sum
instance, D is bounded above by 1 + O

(
log logmaxA

logmaxA

)
; we

show this fact next. We find that a result of Erdős [11] (with
improvements by Elkies [10]) is applicable to the density of
the unique subset sum instances. [12] For ` > 1, the largest
number of integers a1, . . . ,an ≤ 2` having the unique sum
property is limited by

`+1≤ n < `+
1
2

log2 `+
1
2

log2 π .

Using this, the density D of any set of `-bit values {a1, . . . ,an}
with the unique sum property is

D <
`+0.5log2 `+0.5log2 π

`

< 1+
log2 `

2`
+

0.826
`

. (1)
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Therefore, for large values of `, D < 1+O
(

log logmaxA
logmaxA

)
. In

practice, most unique subset sum instances have D� 1.
Low values of D in the unique SSP instances are a major

concern, as Lagarias-Odlyzko [16] and Brickell [3] showed
that it is possible to solve almost all SSPs when D is suf-
ficiently small (D� 1). They accomplished this by reduc-
ing the SSP to the problem of finding the Euclidean norm
of the shortest non-zero vector in a lattice. Coster et al. [6]
and Joux-Stern [14] (the CJLOSS attack) independently im-
proved the bound by demonstrating that it is possible to
solve almost all SSPs of density D < 0.9408 (asymptoti-
cally) if a lattice oracle is present, which with high prob-
ability, given a lattice basis of dimension n + 1, finds the
Euclidean-norm shortest nonzero vector of the lattice in poly-
nomial time. While no polynomial-time algorithm is known
to compute the Euclidean-norm shortest nonzero vector of a
lattice precisely, the polynomial-time algorithm by Lenstra,
Lenstra and Lovász (LLL algorithm) [18] solves it with good
approximation for D< 1 in practice. As for almost all unique
subset sum instances, D < 1, the unique SSP is significantly
vulnerable to lattice-based attacks and these attacks are the
major concern to the security of SSP-based cryptosystems.

2.3 The Merkle-Hellman Multiplicative Knapsack-Based
Cryptosystem

As the pioneering work in the area, Merkle and Hellman
[20] proposed an SSP-based cryptosystem known as the Merkle-
Hellman multiplicative knapsack-based cryptosystem. This
PKC is different from the more famous Merkle-Hellman
knapsack-based cryptosystem using a super-increasing se-
quence, which was broken by Shamir [30]. It uses the DLP
computation in a prime field Fp for a generator g to obtain
a unique subset sum instance B = (b1, . . . ,bn) from a set
of n pairwise coprime integers P = (p1, . . . , pn) such that
the product p1 p2 · · · pn < p. Further, the DLP in the field Fp
must be tractable, which asks for p−1 without any large di-
visors. The unique subset sum instance (b1, . . . ,bn) forms
a public key, while (p,g, p1, . . . , pn) forms a private key.
Given an n-bit plaintext (m1, . . . ,mn), a sender computes
a ciphertext c as c = ∑

n
i=1 mibi. While decrypting, know-

ing the private key, a receiver computes u ≡ gc (mod p) =
∏gmibi . The value u will be a product of integers chosen
from {p1, . . . , pn}, so the receiver can factor u by trial divi-
sion of these values to recover the plaintext (see [20] for a
detailed discussion).

As bi = logg pi ∈ Zp−1, with high probability, the size
of the set of elements log(maxB) = log(p), where maxB =

max(b1, . . . ,bn). As density D = n
log(bmax)

, we obtain log p =

n/D. In the Merkle-Hellman cryptosystem, as ∏pi∈P pi <

p, on average, pi < n
√

p. Therefore, log pi <
1
n log p, log pi <

n
nd = 1

d and for any reasonable pi, the density d� 1. There-

fore, the density of a unique subset sum instance generated
by the Merkle-Hellman multiplicative knapsack-based cryp-
tosystem is significantly less than 1 and is not secure against
LLL-based lattice attacks. Due to the high O(n6 log3 (maxB))

complexity of the LLL algorithm, choosing a large n≥ 500
is an option to avoid lattice attacks, as maxB > (n logn)n.
However, this results in an infeasibly large public key, often
on the order of megabytes.

2.4 The Chor-Rivest Cryptosystem

In 1984, Chor and Rivest [4] proposed another cryptosystem
based on the SSP. This cryptosystem uses the elegant Bose-
Chowla theorem [2] to ensure that each plaintext message
gets mapped to a unique ciphertext.

The Chor-Rivest cryptosystem is not out of reach for lat-
tice attacks. Schnorr and Hörner improved the attacks [29],
solving instances of subset sum generated by the Chor-Rivest
cryptosystem. Somewhat surprising at the time, their attack
worked on instances with density greater than one, up to
D = 1.271. However, the attack relies only on knowledge
of p (the size of the base field).

This system was not completely broken until Vaudenay
presented new attacks on it [33]. He improves the known
t attack, the known π attack, and the known g attack dis-
cussed by Chor and Rivest in [5] and further utilizes them
along with symmetries in the private keys to launch practi-
cal attacks. We refer to his paper [33] for detailed discussion
of this attack. In practice, this attack finds the private key in
time less than that of key generation. Vaudenay also propose
few solutions to thwart the attack. However, we observe that,
these constraints severely restrict the domain for elements in
the Chor-Rivest scheme, and makes this scheme infeasible.

2.5 The OTU Quantum Public Key Cryptosystem

Okamoto, Tanaka and Uchiyama propose a new SSP-based
scheme (the OTU scheme) [24], which combines the best
features from the multiplicative Merkle-Hellman and Chor-
Rivest cryptosystems and overcomes the low density prob-
lem and the known underlying field problems in the respec-
tive systems. We summarize the basic OTU scheme in Ap-
pendix A and refer the reader to [24] for a detailed discus-
sion.

In the basic OTU scheme, as in the Merkle-Hellman cryp-
tosystem, knowledge of a finite field Fp, a particular gener-
ator g, and an extra “shifting parameter” d allows decryp-
tion by converting a subset sum instance into a factorization
problem with a known small set of factors to choose from.
The key distinction is that in the Merkle-Hellman scheme, p
must be chosen so that p > p1 p2 · · · pn, whereas in the OTU
scheme, it suffices that p be greater than products of any k of
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the pi, for a suitable parameter k = o(n). This eliminates the
low density problem as the resulting bi will be smaller, in-
creasing the density D by a factor of n/k. The derived public
key is no longer a unique subset sum instance; it is rather an
instance of a variant we call the k-unique subset sum prob-
lem.

Definition 4 (k-Unique Subset Sum Problem) Let A =

{a1, . . . ,an} be a set of positive integers such that the sum
of every subset of any fixed size ≤ k is unique (i.e., for
A1,A2 ⊆A of the same size ≤ k, if ∑ai∈A1

ai = ∑a j∈A2
a j,

then A1 =A2). Given the set A and an integer c, find A ′ ⊆
A (if such a subset exists) such that c = ∑ai∈A ′ ai.

As only certain subset sums need to be unique, the density
bound in Equation (1) does not apply to the k-unique SSP.
Although, to the best of our knowledge, there is no related
density bound for k-unique SSP instances available in the lit-
erature, in practice, the densities of k-unique SSP instances
are much higher than those of the unique SSP instances.
Further, every unique SSP instance is also a k-unique SSP
instance.

On the practical side, using the k-unique SSP with small
value of k = o(n) also provides significant savings in the
public key size, which is in the range of nk(logn+log(logn)).
This makes n≈ 1000 also a feasible case, for which a LLL-
algorithm execution is well beyond the currently assumed
adversarial computational capabilities.

The Chor-Rivest cryptosystem [4] was the first to use
the k-unique SSP. The OTU scheme, which combines the
Merkle-Hellman and the Chor-Rivest schemes, achieves sim-
ilar (medium) density by generating k-unique SSP instances.
Concerned mostly with the density-based attacks, both these
systems fail to formally identify and define the k-unique
SSP.

2.6 Lattice-Based attacks for k-Weight Subset Sums

On the theoretical side, Omura and Tanaka [25] and Nguyen
and Stern [22] improve lattice-based attacks on SSP instances
for the specialized case of the low values of k used in the
OTU scheme. They observe that due to the known low weights
of the OTU plaintexts, the density bounds of the Lagarias-
Odlyzko as well as CJLOSS attacks can be revised to much
higher values. Nguyen and Stern further demonstrate that
all the parameter values (n, k) suggested in the original OTU
paper are actually susceptible to lattice-based attacks and
introduce a new density measure called pseudo-density =

k log2 n/ log2(maxB) to be used in place of conventional
density for low-weight SSPs. Notably, they also suggest the
possibility of OTU parameters secure against lattice-based
attacks.

To achieve pseudo-density > 1 we need maxB < nk. In
the OTU scheme, maxP� n and the product of the k largest

pi has to be smaller than p. Further, maxB is nearly equal
to p, and p > (maxP)k � nk. Thus pseudo-density > 1 is
nearly impossible and we do not consider the OTU scheme
to be theoretically secure against lattice-based attacks. How-
ever, as discussed above, with large n, practical lattice-based
attacks are computationally infeasible. Without any signifi-
cant reduction in the LLL algorithm complexity in last 25
years since its inception, we believe in security based on the
infeasibility of an LLL computation for n≥ 500 and use that
to define a practical SSP-based system.

In another effort, Izu et al. [13] generalized the CJLOSS
attack to improve its non-asymptotic behaviour; they can at-
tack low-weight SSPs of higher density, at a cost of O(nr)

lattice basis reductions of dimension n− r+1, where r is a
small constant (typically r ≤ 5). Considering the very high
cost of a single LLL-algorithm call, performing O(nr) lattice
basis reductions is certainly well beyond existing computa-
tional capabilities for n≥ 500.

3 A Generic Cryptosystem Based on the SSP

Most of the SSP-based cryptosystems use DLP computa-
tions in their key generation steps. They assume the exis-
tence of an oracle to solve arbitrary DLP (e.g. the OTU
scheme [24]) or propose to choose a finite field from a re-
stricted set where the DLP computation is easy (e.g. Merkle-
Hellman [20] and Chor-Rivest [4] cryptosystems). This sig-
nificantly reduces the practicality of the SSP-based cryp-
tosystems, until quantum computers are available to solve
arbitrary DLPs in polynomial time.

In this section, we eliminate need of the DLP compu-
tation in the key generation step of these cryptosystems.
We show that any invertible map with certain homomorphic
properties can replace the DLP computation and present a
generic construction of an SSP-based cryptosystem based
on it.

3.1 Homomorphism in SSP-Based Cryptosystems

SSP-based schemes use the DLP computation over a mul-
tiplicative group of a finite field to convert easy factoriza-
tion problems (with a small set of possible factors) to SSP
instances. In such schemes, DLP computations in the key
generation step map secret integers to their exponents. In
exactly the opposite manner, in the decryption step, modu-
lar exponentiations convert ciphertexts, which are sums of
some of these exponents, into products of the correspond-
ing secret integers. The homomorphic property of the DLP
computation over a multiplicative group of a finite field,
which makes these cryptosystems work, can be expressed
as DLPg(x1)+DLPg(x2)≡ DLPg(x1 ∗x2), where DLPg : F∗q 7→
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Z/(q−1)Z such that for every x∈F∗q and a generator g∈F∗q,
y = DLPg(x) if x = gy.

In these cryptosystems, the DLP itself does not provide
the security. It is rather based on hiding the field Fq and the
generator g, as it is infeasible to obtain an integer x (pri-
vate key) from the corresponding exponent y (public key)
without knowing Fq and g. Except for the homomorphic
property above, none of other features of the DLP are used
in these cryptosystems. Therefore, we can replace the DLP
oracle in these schemes with any other invertible additive-
multiplicative homomorphism, where computation of the map
and its inverse is infeasible without knowing some secret
information. Formally, we need a map Hσ with following
properties.

1. Hσ should be an invertible map such that

Hσ : S1→S2

H−1
σ : S2→S1

are homomorphisms, where (S1,∗) and (S2,+) are two
Abelian semigroups of the same size.

2. Computation of both Hσ and H−1
σ requires knowledge

of a secret parameter σ .

3.2 Generic SSP-based Scheme

We first define the k-unique subset sum property over struc-
tures other than the integers.

Definition 5 (k-unique Subset Sum property over (S ,+))
Let (S ,+) be an Abelian semigroup, and let A = {a1, . . . ,an}
be a set of n elements of S . The A has the k-unique Subset
Sum property over (S ,+) if whenever A1,A2 ⊆ A of the
same size ≤ k and ∑ai∈A1

ai = ∑a j∈A2
a j, then we have that

A1 = A2.

We now use the above homomorphic map Hσ to define
the generic SSP-based cryptosystem. Although Hσ can re-
place the DLP computation in any SSP-based cryptosystem,
we choose the OTU scheme considering its computational
security against all known attacks.

Key Generation:
1. Fix size parameters n,k ∈ Z+, with k < n/2.
2. Choose two Abelian semigroups (S1,∗), (S2,+) and

a mapping Hσ : S1→S2 (with corresponding secret
σ ) satisfying the properties listed in Section 3.1.

3. Select at random n elements p1, p2, . . . , pn ∈S1 such
that P= {p1, p2, . . . , pn} has the k-unique Subset Sum
property over (S1,∗), and solving the k-unique SSP
on the set P in (S1,∗) is easy, given that the target
subset is of size k.
An easy way to do this is to have S1 be the mul-
tiplicative group of GF(p), and for p1, p2, . . . , pn to

be such that the product of any k of them (or prop-
erly, their least positive representatives) is less than
p, and are pairwise coprime. Note that in this case,
since (S1,∗) is a multiplicative group, the SSP here
is really referring to finding factors of products in-
stead of addends of sums.

4. Use the secret σ to compute ai = Hσ (pi) ∈ S2 for
1≤ i≤ n.

5. Randomly choose an integer d ∈S2. Compute bi =

ai + d ∈S2, for each 1 ≤ i ≤ n. This value d helps
to confound an attacker’s attempt to brute-force the
secret σ .

6. The public key is (n,k,b1,b2, . . . ,bn), and the secret
key is (Hσ ,H−1

σ ,σ ,d,P).
Encryption:

1. A plaintext M = (m1, . . . ,mn) is a binary vector of
length n with exactly k ones. Any message of size
blog2

(n
k

)
c bits can be converted to a valid plaintext

M by a straightforward encoding [7].
2. The ciphertext c ∈S2 is computed as

c =
n

∑
i=1

mibi = ∑
i∈M′

bi

where M′ is the set of nonzero indices of m.
Decryption:

1. Compute r = c− kd where kd = (d +d + · · ·+d)︸ ︷︷ ︸
k times

∈

S2.
2. Calculate u = H−1

σ (r) ∈S1 and solve the k-unique
SSP on P and u over (S1,∗) to obtain a subset P′⊂P
of size k. If pi ∈ P′, then mi = 1, else mi = 0.

3. The recovered plaintext is M = (m1, . . . ,mn).
Proof of Soundness: In decryption,

u = H−1
σ (r)

= H−1
σ (c− kd)

= H−1
σ (

n

∑
i=1

mibi− kd)

= H−1
σ (

n

∑
i=1

mi(ai +d)− kd)

= H−1
σ (

n

∑
i=1

miai) as exactly k of the mi are 1

=
n

∏
i=1

H−1
σ (miai)

= ∏
i:mi=1

pi

where ∏ and ∑ denote application of the semigroup op-
eration over (S1,∗) and (S2,+), respectively. Since P=

{p1, . . . , pn} was chosen so that it has the k-unique Sub-
set Sum property over (S1,∗) and that solving the k-
unique SSP on P is easy, the decryption step will recover
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the set P′ containing exactly those pi for which mi = 1,
and the proof is complete.

4 Using the Damgård-Jurik Homomorphism

The finite field DLP is the most natural example for the ho-
momorphism Hσ characterized in Section 3.1. But due to its
superpolynomial complexity, SSP-based cryptosystems re-
quiring the use of the finite field DLP are not practical on
classical computers. Although it is a workable solution to
use finite fields in which the DLP computation is easy, it
severely restricts the possible choices for the secret key and
makes the cryptanalysis easy. In this section, we show that
the Damgård-Jurik generalization [9] of the Paillier cryp-
tosystem [26] provides a homomorphism map satisfying all
of the requirements of Section 3.1, and we apply this map to
design a practical SSP-based cryptosystem.

Paillier [26] introduced the composite residuosity class
problem and presented a probabilistic homomorphic public
key cryptosystem with the trapdoor permutation property.
For t = pq where p and q are prime and g ∈ Z∗t2 having
order t, the Paillier cryptosystem provides an isomorphism
Eg such that

Eg : Zt ×Z∗t → Z∗t2

(x,y) 7→ gx ∗ yt (mod t2).

It has a homomorphic property

Eg(x1,y1)∗Eg(x2,y2) = Eg(x1 + x2,y1 ∗ y2).

In the usual use of Paillier, x is the message plaintext, and y
is a randomization factor used to achieve semantic security.

Damgård and Jurik [9] generalize the Paillier Cryptosys-
tem using computation modulo ts+1, for an integer s such
that 1≤ s < min(p,q). For an element g ∈ Z∗ts+1 of order ts,
the corresponding map E s

g can be represented as follows:

E s
g : Zts ×Z∗t → Z∗ts+1

(x,y) 7→ gx ∗ yts
(mod ts+1).

E s
g has the same homomorphic property as Eg:

E s
g (x1,y1)∗E s

g (x2,y2) = E s
g (x1 + x2,y1 ∗ y2).

To obtain a homomorphism Hσ as defined in Section 3.1,
we need to consider the decryption function (say D s

g) corre-
sponding to E s

g such that

D s
g : Z∗ts+1 → Zts ×Z∗t .

Given a ciphertext c = gxyts ∈ Z∗ts+1 , and the factorization of
t, D s

g returns x ∈ Zts and y ∈ Z∗t in polynomial time. This
is achieved by computing cλ for λ = lcm((p− 1)(q− 1)),
then applying function L()̇ from [9]. D s

g provides a homo-
morphism of the form

D s
g(c1 ∗ c2) = (x1 + x2,y1 ∗ y2)

We note that this encryption-decryption pair (E s
g ,D

s
g) can

not be directly used as our desired (H−1
σ ,Hσ ), since the ho-

momorphism is additive (as required) on the first coordinate,
but multiplicative on the second. We overcome this obstacle
by considering the deterministic version of Damgård-Jurik
that fixes y = 1, yielding a bijection between (〈g〉,∗) and
(Zts ,+). Note that we use the Damgård-Jurik cryptosystem
only as a homomorphic map; the security of our cryptosys-
tem does not depend upon the security of the special case of
the Damgård-Jurik cryptosystem with y = 1.

The modified decryption function D̂ s
g is a homomorphism

such that

D̂ s
g(c1 ∗ c2) = (x1 + x2)

= D̂ s
g(c1)+ D̂ s

g(c2)

and the corresponding encryption function Ê s
g satisfies

Ê s
g (x1)∗ Ê s

g (x2) = Ê s
g (x1 + x2).

As (D̂ s
g, Ê

s
g ) satisfies all the required properties of (Hσ ,H−1

σ ),
we use them to define a practical SSP-based cryptosystem,
which we present next.

4.1 The Proposed Scheme

Key Generation:
1. Fix size parameters n,k,s ∈ Z+, with k < n/2 and

k < s.
2. Randomly choose two primes p and q and compute

t = pq. Pick an element α ∈R Z∗ts , and verify that
g = αt +1 ∈ Zts+1 has order ts.

3. Select at random n pairwise coprime integers 1 <

p1, p2, . . . , pn < t(s+1)/k such that all of them (con-
sidered as elements of Z∗ts+1 ) belong to the subgroup
〈g〉. Since 1/t of the elements of Z∗ts+1 belong to 〈g〉,
it behooves us to have n� 1/t ∗t(s+1)/k = t(s−k+1)/k,
and this is why we pick s > k. Note that this also
rules out the use of the plain Paillier cryptosystem
(which is just the Damgård-Jurik cryptosystem with
s = 1).

4. Compute ai = D̂ s
g(pi) ∈ Zts for 1≤ i≤ n.

5. Randomly choose an integer d ∈ Zts and compute
bi = ai +d mod ts for each 1≤ i≤ n.

6. The public key is (n,k,b1,b2, . . . ,bn), and the private
key is (p,q, t,s,g,d, p1, p2, . . . , pn).

Encryption:
1. A plaintext M = (m1, . . . ,mn) is a binary vector of

length n with exactly k ones, as before.
2. The ciphertext c∈Zts is computed as c=∑

n
i=1 mibi =

∑i∈M′ bi where M′ is the set of nonzero indices of m.
Note that although the public key consists of n num-
bers, each s times the size of t, encryption consists
simply of adding some k of them together.
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Decryption: Compute r = c− kd ∈ Zts and u = gr ∈ Z∗ts+1 .
Treating u as an integer in the range 0 < u < ts+1, check
if pi|u for each 1 ≤ i ≤ n. If it does, set mi = 1; else set
mi = 0. The decrypted message is then M =(m1, . . . ,mn).

Proof of Soundness: In decryption,

u ≡ gr ≡ gc−kd ≡ g∑
n
i=1 mibi−kd ≡ g∑

n
i=1 mi(ai+d)−kd mod ts+1

= g∑
n
i=1 miai = ∏

i∈M′
gai = ∏

i∈M′
pi

Note that the pi were selected so that they are pairwise
coprime, and that the product of any k of them is less
than ts+1. Therefore, determining which of the pi divide
this u will reconstruct the original M′, and thus M.

4.2 Variants

In this section, we consider some possible variants of the
above scheme, which significantly improve the security of
the private key in the scheme.

Picking non-coprime pi
We suggested above to pick the pi so that they are pairwise
coprime. This condition is sufficient to ensure that a product
of some subset of the pi can be uniquely factored in polyno-
mial time. However, this condition is not strictly necessary.
For example, it also suffices that for each of the pi, there is
some prime power which divides it, and which divides none
of the other pi. This can be easily checked by ensuring that
p2

i 6 |∏n
j=1 p j for each i. The non-unique factors of the pi

can be ignored when recovering the factorization of u, and
choosing the pi in this way greatly increases the number of
possible keys for given size parameters.

Variable k
Some utility may be obtained by having the sender choose
the value of k, rather than it being a fixed part of the public
key, as it increases the number of possible ciphertexts for a
given plaintext. Note that in order to decrypt correctly, the
receiver needs to know k, so that she can calculate r = c−kd.
Therefore, in this case, k would need to appear as part of
the ciphertext. It is important that k does not depend on the
plaintext, of course, as that would leak information to an
observer. Minor modifications and care are needed in the
choosing of the parameters in this case, but we find that these
are easily handled.

Prime or multi-prime t
We stated that t should be the product of the two primes p
and q. However, it is also possible to use a prime t, as the
required multiplicative group also exists in that case. Fur-
ther, as t is part of the private key in this system, and not
disclosed, it is acceptable to use a larger number of smaller

(distinct) primes. This will involve the use of a straightfor-
ward extension of the Damgård-Jurik homomorphism to the
multi-prime case. Choosing a prime or multi-prime t signif-
icantly increases the search space for an attacker.

5 Security Analysis

We observe that the public keys produced by our cryptosys-
tem are instances of the k-unique SSP from Definition 4,
where only subsets of fixed size at most k need to have
unique sums; there will likely be pairs of larger subsets (or
pairs of subsets of unequal size) that have equal sums.

Fact The {bi} portion of every public key obtained using
the scheme from Section 4.1 has the k-unique Subset Sum
property over (Zts ,+).

Proof Let (n,k,b1, . . . ,bn) be a public key generated by our
scheme. Let B = {b1, . . . ,bn}, and let B1,B2 be two subsets
of B, each of size k, such that ∑bi∈B1

bi = ∑bi∈B2
bi. Let this

common sum be c. For i ∈ {1,2}, let Mi be the index set
of Bi; that is, Mi = { j : b j ∈ Bi}. Because decryption has
been proven to be sound, we must have that c has a unique
decryption, so M1 = M2, and therefore B1 = B2.

Now suppose B1 and B2 are subsets of B of the same size
k′ < k < n/2 that have the same sum. Then B′ = B\(B1∪B2)

has at least n− 2k′ > k− k′ elements, since n > k+ k′. Let
B∗ be a set of any k− k′ elements of B′. Then B1 ∪B∗ and
B2 ∪B∗ are subsets of size k with the same sum, and so by
the above, B1 = B2.

Thus, the decryption problem in our cryptosystem is an
instance of the k-unique SSP. Of course, being an instance
of k-unique SSP does not provide any evidence towards the
hardness of our decryption problem; however, it certainly
puts it in the security range of the OTU scheme. Next we
discuss concrete security properties of our cryptosystem.

5.1 Semantic Security

The encryption scheme defined in Section 4.1 is not proba-
bilistic in nature and consequently, does not provide seman-
tic security. However, as with other deterministic encryp-
tion schemes, it is possible to achieve semantic security by
padding the message with a random string before encrypt-
ing. Here, a message is padded with random string before
deterministically encoding it to a n bit plaintext of weight
k. After decryption and subsequent decoding, the random
padding is removed to obtain the message sent. Note that the
length of the random padding depends upon the security re-
quirements; 80 bits is usually an appropriate value. It is also
possible to achieve higher security goals by using the revised
optimal asymmetric encryption padding (OAEP+) [32].
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5.2 Attacks

We consider the system to be secure against an attack if an
adversary needs to do approximately 280 computations for
that attack to be successful. We next discuss important at-
tacks on our system and restrictions on our parameters to
avoid these attacks.

Lattice-based attacks using the LLL algorithm have been
the single most important tool used to cryptanalyze exist-
ing SSP-based cryptosystems. [6,13,14,22] As already dis-
cussed, the computational complexity of the LLL algorithm
is very large, requiring O(n6 log3 (maxB)) operations, where
maxB > ts for our cryptosystem. For n ≥ 500 and ts in the
1500-bit range, a single LLL computation is beyond the ca-
pacity of an adversary with a computational power of 280

operations.
Note that recent floating-point versions of LLL, such as

Schnorr’s algorithm [28] and the L2 algorithm [21] provide a
bit smaller complexity bounds, such as O(n5 log2 (maxB)).
However, these algorithms also have associated floating point
errors and the reduction in security is still tolerable in many
practical scenarios. Further, lattice-dimension reduction at-
tacks for convolution modular lattices [19] are not applica-
ble to solving our non-convolutional SSP instances, and our
choice of k = ω(logn) reduces the success probability for
these attacks to be negligible in any event.

In order to achieve semantic security, and the ability to
encrypt a large number of messages, we would like both the
size of our message space and that of the random padding to
exceed 80 bits. Therefore, we need to select n and k such that(n

k

)
≥ 2160. Further, the complexity of the dynamic program-

ming method to solve an SSP instance is at least Ω(maxB).
Here, maxB = ts = 2sτ , where τ = log2 t, so we choose
sτ ≥ 80.

5.3 Choosing parameters

An important consideration to the security of our scheme
is the choice of the parameters n, k, and s (and relatedly
t). Considering various attacks discussed above, we apply
following restriction on the parameters n, k, s, and t.

–
(n

k

)
must be sufficiently large to resist brute-force attacks

and also to provide sufficient message size to realize
padding-based semantic security.

– n, s, and τ = log t must be large enough such that lattice-
based attacks, requiring at least O(n6s3τ3) operations,
are not possible

– n� t(s−k+1)/k (from section 4.1) so that there are a large
number of private key choices for given parameter sizes

Strategy
We suggest a following strategy to choose the parameters
for our cryptosystem.

1. Choose n sufficiently large so that computational resis-
tance against lattice attacks is feasible.

2. Select n and k large enough to obtain message size ≥
2160.

3. Find τ (the bitlength of t) and s such that s > k and n�
(2τ)(s−k+1)/k = 2(s−k+1)τ/k. That is, k

s−k+1 log2 n� τ .
4. Select t to be a square-free integer of size τ such that

all of its prime factors are greater than s. Note that it is
acceptable for t to be smaller than a usual RSA modulus,
since it is not made public. Damgård-Jurik is used for
its discrete log homomorphism, not for its cryptographic
strength. However, t should still be large enough that an
attacker cannot brute-force all values of t (though the
confounding factor of d, which is of size sτ bits, may be
enough to thwart that).

The public key size is around nsτ bits, while encryption
requires O(ksτ) single-precision additions. Decryption re-
quires O(s3τ3) single-precision multiplications.

Example
For the practical security of constrained devices, we find
the parameter set (n,k,s,τ) = (500,30,35,50) to be conve-
nient. Here,

(n
k

)
is approximately 2160, the public key is 109

KBytes and a lattice-based attack requires around 5006353503

> 286 computations using the LLL algorithm. Also, 240 choices
for t (assuming prime and multi-prime t), and ts ≈ 21750

choices for g and d make private-key extraction difficult.

6 Application: RFID Security and Privacy

Cryptosystems based on the knapsack and subset-sum prob-
lems provide feasible options for authentication and identi-
fication protocols for RFID chips as the encryption steps for
these systems are practical for computationally constrained
devices. Further, with the availability of a randomness source
on a chip, it is easily possible to make these protocols pri-
vacy preserving. Cui et al. [8] use the Niederreiter asymmet-
ric encryption scheme [23] to define a privacy-preserving
authentication protocol for RFID systems. Our SSP-based
cryptosystem, which requires considerably less computation
than that of the Niederreiter cryptosystem, certainly pro-
vides a promising choice. Although previous SSP-based cryp-
tosystems such as OTU [24] were also suitable for RFID
chips, the need of a DLP oracle in the key generation step
has been a major obstacle in considering them for practical
use. Our encryption scheme using the homomorphism of the
Damgård-Jurik system overcomes this obstacle and provides
a polynomial-time key generation scheme.
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RFID Tag RFID Reader
(ID,PK) (PK,SK)

c ∈R {0,1}δ

c⇐=
[r ∈R {0,1}80−δ ]

R = EncryptPK([r]||ID||c)
R

=⇒
[r′]||ID′||c′ = DecryptSK(R)

Verify c′ ?
= c.

Identify the tag using ID.

Fig. 1 Privacy-preserving Identification Protocol

6.1 Privacy-Preserving Identification Protocol

In this protocol, we assume that there is a public key-private
key pair associated with a valid RFID reader and the reader’s
public key is embedded in a RFID chip. The RFID chip also
contains an identification string ID, which it needs to present
to the reader to identify itself. In order to avoid cloning of
the RFID signals or the corresponding counterfeiting of an
associated object, we need a mechanism for secure and pri-
vate transfer of the identification string from the chip to the
reader. We achieve this using our encryption protocol. In or-
der to avoid a replay attack, where an eavesdropper replays
a signal from a legitimate RFID chip, the reader sends ran-
domly generated challenge string c. Subject to the availabil-
ity of an randomness source on the RFID chip, it is also
possible to make the protocol privacy-preserving. Here, the
chip pads the identifying string ID and the received chal-
lenge c with a random string r, so that its responses for
two identical challenges from an active attacker differ. Note
that in the absence of a randomness source on the RFID
chip, deterministic responses make privacy-preserving iden-
tification impossible against an active attacker. We present a
privacy-preserving identification protocol in Figure 1. Here,
the reader’s challenge c and the optional randomness r com-
bine to form the 80 bits of randomness required for semantic
security.

6.2 A Multi-chip Identification Scheme Using the Chinese
Remainder Theorem

Although the parameter choices presented in the example
in Section 5.3 can be used to develop a practical and secure
identification scheme, the large public-key size can be a con-
cern during the implementation. In this section, we mitigate
this problem using Chinese remainder theorem (CRT) based
public key distribution over multiple RFID chips. In this
multi-chip solution, we distribute the RFID reader’s public
key over multiple RFID chips and then appropriately com-
bine the responses received from the involved chips to de-
crypt the message and determine the identity of the product
those are attached to.

The number of RFID chips to be used in this distributed
protocol is determined by the number of pairwise coprime
factors of the parameter ts. For t = pq used in the proposed
scheme (Section 4.1), we can use two RFID chips. We di-
vide the public-key parameters bi ∈ Zts for i ∈ [1,n] into
b(p)

i = bi mod ps and b(q)i = bi mod qs, and along with an
identical identity string ID, put all b(p)

i on one chip and all
b(q)i on the other. The identification protocol remains exactly
the same except during the decryption step at the reader.
During the decryption step, the reader collects ciphertext
parts R(p) and R(q) received from the two chips, computes
R(p) mod ps and R(q) mod qs and extracts the corresponding
R mod ts using CRT. We assume that both chips are physi-
cally close to each other so that they both receive the chal-
lenge sent by the reader. In other words, we assume that the
reader sends the same challenge c to both chips. Further, for
this identification to be privacy preserving, both chips have
to use the same r value, which is possible using a pseudo-
random number generator with the same seed value on both
chips.

Note that an active attacker may somehow target just one
of the two chips and destroy the synchrony of the generated
randomness and similarity of the plaintext at the two chips.
However, this is an example of denial of service (DoS) at-
tack. If two chips are in close proximity, then an attacker
that can selectively target one of the two chips can also eas-
ily destroy the chip by other physical means. Therefore, in
practice, this desynchronization attack is not relevant. Next,
we describe the proof of soundness, security and advantages
of our approach.

Proof of Soundness
We have gcd(ps,qs) = 1. Let M = Encode([r]||ID||c) be the
plaintext of length n with exactly k ones (which will be en-
crypted by both chips) and M′ is the set of nonzero indices
in M. Given R(p) = ∑i∈M′ b

(p)
i and R(q) = ∑i∈M′ b

(q)
i ,

R = CRT-Reconstruct(R(p) mod ps,R(q) mod qs)

= CRT-Reconstruct( ∑
i∈M′

b(p)
i mod ps, ∑

i∈M′
b(q)i mod qs)

= ∑
i∈M′

CRT-Reconstruct(b(p)
i ,b(q)i )

= ∑
i∈M′

bi mod ts

Here, function CRT-Reconstruct represents a reconstruc-
tion algorithm that, given the remainders, computes the div-
idend in the CRT setting. The rest of the soundness proof
remains the same as that of the basic scheme (Section 4.1),
by substituting r = R.
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Security Analysis

When compared with the original instance (b1,b2, · · · ,bn),
the reduction in the complexity of LLL attacks over each
of instances (b(p)

1 ,b(p)
2 , · · · ,b(p)

n ) and (b(q)1 ,b(q)2 , · · · ,b(q)n ) is
η3, where η represents the number of parts into which the k-
unique SSP instance is divided; η is also the number of pair-
wise co-prime factors of t (η = 2 here). For η3 = 8, an LLL
attack over (b(p)

1 ,b(p)
2 , · · · ,b(p)

n ) or (b(q)1 ,b(q)2 , · · · ,b(q)n ) is just
8 times faster than that over the original instance. Conse-
quently, as required, LLL attacks remain infeasible. Further,
although the attacker now has the additional knowledge that
all b(p)

i < ps and all b(q)i < qs, guessing the private-key pa-
rameters is still beyond the reach of a polynomially bounded
attacker. Finally, the complexity of the brute force attack re-
mains the same

(n
k

)
.

Advantages
Although we describe our multi-chip solution for η = 2, it
can be seamlessly extended to more chips using multi-prime
t having more than 2 coprime factors (η > 2). Further, using
the above solution, the size of the public key to be stored
per chip gets reduced by a factor of η . For the example de-
scribed in Section 5.3, the above multi-chip solution reduces
the size of public key to (109/η) KBytes. The complexity
of the encryption step also decreases by a factor of η .

7 Conclusion

In this paper, we provided a general construction for SSP-
based cryptosystems and identified the requirements for the
underlying homomorphism. We used the homomorphism from
the Damgård-Jurik cryptosystem to provide a polynomial-
time key generation procedure for the OTU cryptosystem,
leading to a practical SSP-based cryptosystem.

We observed that our cryptosystem is computationally
secure against lattice-based attacks and presented an appli-
cation of these cryptosystems in defining an efficient RFID
security and privacy solution.
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A The Okamoto-Tanaka-Uchiyama Cryptosystem

Here we show the basic version of the OTU cryptosystem [24]. Note
the use of a quantum computation in step 3 of the key generation, which
our system avoids.

Key Generation:
1. Fix size parameters n,k from Z+

2. Randomly choose a prime p, a generator g of the group Z∗p,
and n coprimes 1 < p1, . . . , pn < p such that ∏

k
j=1 pi j < p for

any subset {pi1 , pi2 , . . . , pik} of {p1, p2, . . . , pn}.
3. Use Shor’s quantum algorithm to compute ai = logg pi in Z∗p

for 1≤ i≤ n.
4. Randomly choose an integer d ∈ Z/(p−1)Z.
5. Compute bi = (ai +d) (mod p−1), for each 1≤ i≤ n.
6. The public key is (n,k,b1,b2, . . . ,bn), and the secret key is

(g,d, p, p1, p2, . . . , pn).
Encryption:

1. Let the message M = (m1, . . . ,mn) be a binary vector with
exactly k ones. The ciphertext is computed as

c =
n

∑
i=1

mibi = ∑
i∈M′

bi

where M′ is the set of nonzero indices of m.
Decryption:

1. Compute r = (c− kd) (mod p−1).
2. Compute u as the least positive representative of gr (mod p).
3. For i from 1 to n, if pi | u then mi = 1, otherwise mi = 0.

Proof of Soundness
In decryption,

u ≡ gr ≡ gc−kd ≡ g∑
n
i=1 mibi−kd ≡ g∑

n
i=1 mi(ai+d)−kd (mod ts+1)

= g∑
n
i=1 miai = ∏

i∈M′
gai = ∏

i∈M′
pi

Now, by testing which pi | u, one can recover the k nonzero bits of
M.
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