
Multi-party Off-the-Record Messaging

Ian Goldberg
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada

iang@cs.uwaterloo.ca

Berkant Ustaoğlu
NTT Information Sharing Platform Laboratories

Tokyo, Japan
bustaoglu@cryptolounge.net

Matthew D. Van Gundy
Department of Computer Science

University of California, Davis, CA, USA
mdvangundy@ucdavis.edu

Hao Chen
Department of Computer Science

University of California, Davis, CA, USA
hchen@cs.ucdavis.edu

ABSTRACT
Most cryptographic algorithms provide a means for secret
and authentic communication. However, under many cir-
cumstances, the ability to repudiate messages or deny a con-
versation is no less important than secrecy and authentic-
ity. For whistleblowers, informants, political dissidents and
journalists — to name a few — it is most important to have
means for deniable conversation, where electronic commu-
nication must mimic face-to-face private meetings. Off-the-
Record Messaging, proposed in 2004 by Borisov, Goldberg
and Brewer, and its subsequent improvements, simulate pri-
vate two-party meetings. Despite some attempts, the multi-
party scenario remains unresolved.

In this paper, we first identify the properties of multi-
party private meetings. We illustrate the differences not
only between the physical and electronic medium but also
between two- and multi-party scenarios, which have impor-
tant implications for the design of private chatrooms. We
then propose a solution to multi-party off-the-record instant
messaging that satisfies the above properties. Our solution
is also composable with extensions that provide other prop-
erties, such as anonymity.

Categories and Subject Descriptors
K.4.1 [Management of Computing and Information
Systems]: Public Policy Issues—Privacy ; E.3 [Data]: Data
Encryption; K.6.5 [Management of Computing and In-
formation Systems]: Security and Protection—Authenti-
cation; H.4.3 [Information Systems Applications]: Com-
munication Applications—Computer conferencing, telecon-
ferencing, and videoconferencing ; C.2.2 [Computer-
Communication Protocols]: Network Protocols—Appli-
cations

General Terms
Security, Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09, November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$5.00.

Keywords
Privacy, deniability, multi-party, instant messaging

1. MOTIVATION
The Internet presents a novel means of communication

— instant messaging (IM), where users can engage in ac-
tive conversations across great distances. However, IM lacks
certain fundamental security properties that a physical pri-
vate conversation can provide. Impersonation, eavesdrop-
ping and information copying are all trivial attacks in IM.

Online communication systems commonly provide three
properties: confidentiality, authentication and non-repudia-
tion. Confidentiality and authentication are expected traits
of face-to-face conversations, but non-repudiation clashes
with the expectations for private communication. Non-re-
pudiation denotes a receiver’s ability to prove to a third
party, possibly a judge, that the sender has authored a mes-
sage. Although desirable under many circumstances, non-
repudiation is the very property journalists, dissidents or
informants wish to avoid.

Borisov, Goldberg and Brewer [6] argued that instant mes-
saging should mimic casual conversations. Participants of a
casual talk can deny their statements in front of outsiders,
and can sometimes deny having taken part in the talk at all.
The authors presented a mechanism called Off-the-Record
Messaging (OTR) that allows two-party private conversa-
tions using typical IM protocols. OTR aims to provide con-
fidentiality, authentication, repudiation and forward secrecy,
while being relatively simple to employ.

Despite its good design, OTR has limitations, the most
important of which is that it can serve only two users. Hence
it is not suitable for online multi-party conversations, com-
monly enjoyed by casual users via Internet Relay Chat (IRC),
by open-source software developers, and by businesses that
cannot afford confidential meetings across vast distances [4,
§2.3]. It is non-trivial to extend OTR to allow for multi-
party conversations, as OTR uses cryptographic primitives
designed for two parties. For example, OTR uses message
authentication codes (MACs) to provide authenticity. While
for two parties MACs can provide a deniable authentica-
tion mechanism, MACs do not provide origin authentication
when used by more than two parties.

Bian, Seker and Topaloglu [4] proposed a method for ex-
tending OTR for group conversation. The crux of their so-
lution is to designate one user as the “virtual server”. While

this may be feasible under certain circumstances, it devi-
ates from the original OTR goal, which is to mimic private
conversations. In private group conversations there is no
virtual server responsible for smooth meetings. Moreover,
the server becomes an enticing target for malicious parties.
Finally, the server has to be assumed honest, as a dishonest
server could compromise both the confidentiality and the
integrity of all messages sent during a chat session.

In this work, we present a multi-party off-the-record pro-
tocol (mpOTR), which provides confidentiality, authenticity
and deniability for conversations among an arbitrary num-
ber of participants. Using our protocol, an ad hoc group of
individuals can communicate interactively without the need
for a central authority. We identify the important traits
of multi-party authentication for users, for messages and
for chatrooms that share users; that is, we take into ac-
count that two or more users may concurrently share more
than one chatroom with different peers. When considering
privacy properties, we allow malicious insiders and identify
their goals. These multi-party chatroom properties present
new challenges that were not addressed in previous work.

An OTR transcript reveals that a user at some point com-
municated with someone. Our mpOTR protocol carries de-
niability further by allowing the user to deny everything ex-
cept, by virtue of being part of the system, that they were
willing at some point to engage in a conversation. In fact,
it is unclear how users can deny the latter at all because
by using the Internet, they already indicate their intent and
ability to engage with others. In this sense, mpOTR is closer
than OTR to simulating deniability in private conversations
in the physical world: anyone could take or have taken part
in a private conversation, but that person can plausibly deny
ever having done so.

1.1 Related work
While not the first to address security in instant messag-

ing, Borisov, Goldberg and Brewer [6] popularized its pri-
vacy aspects, partly due to their now-popular open-source
plugin. Subsequently, more research was devoted to IM; in
fact, the original proposal was found to contain errors [10],
which were repaired in a subsequent version of OTR.

On a high level there are two approaches to secure IM.
Clients can establish their connections via a centralized server
and rely on the server for security and authentication [16].
Alternatively, participants can use shared knowledge to au-
thenticate each other [1]. OTR, which aims to simulate ca-
sual conversations, is closer to the second solution.

While there is a wide literature on IM (see [15, §2.1] for an
extensive list), little research has focused on the multi-party
privacy aspects of instant messaging. To our knowledge the
only published work with the explicit goal of achieving group
off-the-record conversations is the aforementioned result by
Bian, Seker and Topaloglu [4]. It has traits of Mannan and
Van Oorschot’s work on two-party IM [16] in the sense that
a designated user acts as a server. In some cases, e.g. the
Navy [9], it may be easy to establish a superuser whom
everyone trusts, but if the goal is a casual off-the-record
chat or users are unwilling to trust each other, agreeing on
a server user becomes problematic. We adopt the scenario
where all users are equal.

1.2 Outline
In §2 we identify the relevant properties of private meet-

ings and how they apply to IM. §3 describes the different
players of our model for private communication; we focus
on the different adversaries and their goals. §4 outlines our
solution at a high level and shows that we have achieved the
goals of private conversations. Due to space limitations we
only touch upon the many cryptographic primitives and the
formal definitions we use in this paper. We conclude in §5.

2. PRIVATE CHATROOMS

2.1 Confidentiality
In meetings a user Â is willing to reveal information to

chatroom members but not outsiders. Hence chatroom mes-
sages need to remain hidden from the wider community.
In private physical communication, should a new party ap-
proach, the participants can “detect” the newcomer and take
appropriate actions.

On the Internet eavesdropping cannot be detected as eas-
ily; however, there are ways to guard against casual eaves-
droppers. Cryptographic algorithms can assure parties that
observers looking at the transmitted conversation packets
are left in dark about the communicated content. That is,
the transcript gives an eavesdropper no additional knowl-
edge above information about lengths of messages and traffic
patterns, beyond what the eavesdropper could have deduced
without having seen the encrypted messages.

2.2 Entity authentication
In a face-to-face meeting we identify peers via their ap-

pearances and physical attributes. By contrast, on the Inter-
net a user proves to another user knowledge of some secret
identifying information, a process known as entity authenti-
cation.

The basic goal of entity authentication is to provide evi-
dence that a peer who presents public key SB̂ also holds the
corresponding private key sB̂ . For example, suppose Alice
provides a challenge to Bob. If Bob can compute a response
that can only be computed by an entity possessing sB̂ , then
Bob successfully authenticates himself to Alice. This type
of authentication is limited in the sense that Bob only shows
knowledge of sB̂ . If Bob wants to claim any further creden-
tials like “classmate Bob”, then Alice would need additional
proofs. Two-party entity authentication has been studied in
the setting of OTR by Alexander and Goldberg [1, §4 and
§5]; their solution is suitable for pairwise authentication.

The entity authentication goal for mpOTR is to provide
a consistent view of chatroom participants: each chat par-
ticipant should have the same view of the chatroom mem-
bership. We achieve this goal by first requiring users to
authenticate pairwise to each other. Then users exchange
a short message about who they think will take part in the
chat. Alternatively, a suitable n-party authentication prim-
itive could be used to authenticate all users to each other
simultaneously.

Authentication is challenging. In a centralized approach,
if a malicious party successfully authenticates to the server,
the security of the whole chatroom is compromised. The
problem is more evident when the server itself is malicious.
In our approach, parties do not rely on others to perform
faithful authentication. All parties check to ensure that no
party has been fooled. While we do not provide means to

prevent malicious parties from joining a chat, users can leave
a chat if they wish. In other words a malicious party may
join a chat with a given set of honest participants only if all
the honest participants approve his entrance.

2.3 Origin authentication
Each message has a well-defined source. The goal of ori-

gin authentication is to correctly identify the source. First
of all a user must be assured that the message is sent from
someone who legitimately can author messages in the cha-
troom. In OTR if Alice is assured that a valid OTR peer
sent a message and that peer is not Alice herself, then she
knows Bob sent the message and that only she and Bob know
the message1. In mpOTR if both Bob and Charlie are chat
participants, Alice should be able to distinguish messages
authored by Bob from messages authored by Charlie. She
should also be able to identify origins with respect to chat-
rooms: if Alice and Charlie are both members of chatrooms
C1 and C2, then when Alice receives a message from Charlie
in C1, no one should be able to fool her that the message
was sent in C2. In this way Alice is aware of who else sees
the message.

Message authentication should be non-repudiable among
chat participants in order to allow honest users to relay mes-
sages between one another or to expose dishonest users who
try to send different messages to different parties. Alice
should have the ability to convince Bob, or any other chat
member, that a message she accepted from Charlie indeed
was sent by Charlie. A word of caution: transferability in-
troduces a subtlety when combined with our deniability re-
quirement. Alice’s ability to convince Bob that Charlie au-
thored a message must not allow her to convince Dave, who
is not a chat participant, that Charlie authored the message.

2.4 Forward secrecy
The Internet is a public medium: when a typical user

sends a data packet, the user has little (if any) idea how
the packet will reach its destination. To be on the safe side
we assume that the adversary has seen and recorded every
transmitted packet for future use. The adversary’s ability
to see messages motivates encryption; his ability to record
messages motivates forward secrecy. Forward secrecy im-
plies that the leakage of static private keys do not reveal
the content of past communication. Users achieve forward
secrecy by using ephemeral encryption and decryption keys
that are securely erased after use and that cannot be recom-
puted even with the knowledge of static keys.

We separate encryption keys from static keys. Static keys
are used to authenticate ephemeral data, which is used to
derive short-lived encryption keys. This is a common ap-
proach to achieve forward secrecy. Note that this goal is
unrelated to deniability: in forward secrecy the user does
not aim to refute any message; in fact, the user may not
even be aware of the malicious behavior. The goal of the
adversary is reading the content of a message as opposed to
associating a message with a user.

2.5 Deniability
A casual private meeting leaves no trace2 after it is dis-

solved. By contrast, the electronic world typically retains
partial information, such as logs for debugging, for future

1We assume no “over-the-shoulder” attacks.
2 If there were no logs, wiretapping, etc.

reference, and so on. This contradicts the “no trace” feature
of private meetings. As mentioned in the forward secrecy
discussion, entities involved in relaying messages may keep
a communication record: participants do not and cannot
control all copies of messages they send and hence cannot
be assured that all copies were securely destroyed. Users
can claim the traces are bogus, effectively denying author-
ing messages. But what is the meaning of “deny” in this
context?

Not all deniability definitions are suitable for off-the-record
communication. Consider for example the plaintext denia-
bility notion proposed in [8], where the encryption scheme
allows a ciphertext author to open the ciphertext into more
than one plaintext: Alice wishes to communicate (possibly
incriminating) message M1; she chooses M2, . . . ,Mn non-
incriminating messages and then forms the ciphertext C =
DeniableEncryptK(M1,M2, . . . ,Mn). When challenged to
decrypt, Alice can validly decrypt C to any of the alternate
messages Mi that she chose when forming C. Even though
Alice denies authoring the incriminating plaintext, she im-
plicitly admits to authoring the ciphertext. However, who
you speak to may be as incriminating as what you say. Alice
might get into deep trouble with her mafia boss by merely
admitting that she has spoken with law enforcement, re-
gardless of what she said. She would be in a much better
situation if she could claim that she never authored the ci-
phertext, instead of decrypting the ciphertext to an innocu-
ous plaintext and thereby implicitly admitting authorship.

Contrary to the above example, suppose Alice has means
of denying all her messages in front of everyone, by arguing
that an entity different from herself faked messages coming
from her3. That is, any message purportedly from Alice
could have been authored by Mallory. In that case how
could Bob and Charlie have a meaningful conversation with
Alice? They have no assurances that messages appearing to
come from Alice are indeed hers: Alice’s messages can be
denied even in front of Bob and Charlie. What we need is
a “selective” deniability. We next discuss the selectiveness
of deniability in the requirements for multi-party Off-the-
Record messaging.

2.5.1 Repudiation
The fundamental problem of deniability (FPD) describes

the inherent difficulty for a user Alice to repudiate a state-
ment. Let Justin be a judge. Suppose Charlie and Dave
come to Justin and accuse Alice of making a statement m.
In the best-case scenario for Alice, Charlie and Dave will not
be able to provide any evidence that Alice saidm, apart from
their word. If Alice denies saying m, whom should Justin
trust: Charlie and Dave, or Alice? The voices are two to
one against Alice, but it is possible that Charlie and Dave
are trying to falsely implicate Alice. Justin must decide who
to believe based on his evaluation of the trustworthiness of
their testimony. Justin’s evaluation may be influenced by
many hard-to-quantify factors, such as perceived likelihood
of the testimony, the number of witnesses in agreement, po-
tential benefits and detriments to the witnesses, etc. Justin
may even explicitly favor the testimony of certain witnesses,
such as law enforcement officers. In the end, Justin must
base his decision on weighing the testimonies rather than on

3For example Alice can pick a symmetric encryption key κ
encrypt her message with κ, encrypt κ with Bob’s public
key and send everything to Bob.

physical evidence. In the limit, when n parties accuse Al-
ice of saying m, Alice will have to convince Justin that the
other n witnesses are colluding to frame her. We call this
the fundamental problem of deniability.

We cannot solve the FPD. The best we can offer is to
ensure that Charlie and Dave cannot present any evidence
(consisting of an algorithmic proof) that Alice has said m,
thereby reducing the question to the FPD. In the online
world Charlie and Dave make their claim by presenting a
communication transcript. Therefore, we provide Alice with
means to argue that Charlie and Dave could have created
the transcript without her involvement. As long as Char-
lie and Dave cannot present an algorithmic proof of Alice’s
authorship, she can plausibly deny m, so Justin has to rule
based on the same factors (e.g., weighing the testimonies
rather than on physical evidence) as in the physical world.
By this means, we provide comparable levels of repudiation
between on-line and face-to-face scenarios.

In §2.3 we alluded to the conflicting goals of message origin
authentication and privacy, where the complete deniability
example prevents origin authentication. To provide origin
authentication, we need a special type of repudiation. Let us
look closer at a private communication among Alice, Charlie
and Dave. In a face-to-face meeting Charlie and Dave hear
what Alice says. This is origin authentication. After the
meeting, however, Alice can deny her statements, because,
barring recording devices, neither Charlie nor Dave has evi-
dence of Alice’s statements. This is the type of repudiation
that we aim for.

In contrast to the physical world, on the Internet Char-
lie can differentiate between Alice and Dave when the three
of them are talking and can send them different messages.
While it is impossible to guard against such behavior (either
due to malicious intent or connection problems), we would
like the proof of authorship that Charlie provides to Alice to
also convince other chat participants — and no one else —
of his authorship. That way, all parties are assured that (1)
they can reach a transcript consensus even in the presence of
malicious behavior, and (2) all statements within the chat
can be denied in front of outside parties. This condition
should hold even if Alice and Charlie share more than one
chat concurrently or sequentially: all chats must be inde-
pendent in the sense that if Alice and Charlie share chats C1
and C2 any authorship proof Charlie has in C1 is unaccept-
able in C2. In relation to the previous paragraph we note
that such authorship proofs should also become invalid at
the end of the meeting.

2.5.2 Forgeability
In some cases4 it is valuable to deny not only having made

a statement but also having participated in a meeting. In
the physical world Alice can prove she was absent from a
meeting by supplying an alibi. On the Internet, however,
such an alibi is impossible as Alice can participate in mul-
tiple chatrooms simultaneously. Short of an alibi, the next
best denial is a design where transcripts allegedly involving
Alice can be created without her participation. Although
this mechanism would not allow Alice to prove that she was
absent from the meeting, it prevents her accusers from prov-
ing that she was present at the meeting. A refinement is to
design transcripts that can be extended to include users that
did not participate, to exclude users who did participate, or

4Police informants, for example.

both. Effectively, such transcripts will offer little, if any5,
evidence about who participated in it.

For example, suppose Mallory tries to convince Alice that
Bob spoke with Dave and Eve by presenting a transcript
with participants Bob, Dave, and Eve. Ideally, forgeability
would allow Bob to argue that Mallory fabricated the tran-
script even though Mallory is an outsider with respect to
the transcript.

2.5.3 Malleability
In §2.5.2 we dealt with forging who participated in a com-

munication transcript. With malleability we address the is-
sue of the transcript content. Ideally, the transcript should
be malleable in the sense that given a transcript T1 and a
message m1 that belongs to T1, it is possible to obtain a
transcript T2, where message m1 is substituted with mes-
sage m2. Along with forgeability this approach provides a
strong case for users who wish to deny statements and in-
volvement in chat meetings. For accusers, transcripts with
this level of flexible modification provide little convincing
evidence, even in the event of confidentiality breaches.

2.6 Anonymity and pseudonymity
While in our current work anonymity is not the main goal,

we desire that our solution preserves anonymity. This in-
cludes, but is not restricted to, not writing users’ identities
on the wire. While we do not explicitly address it, users
may wish to use our protocol over a transport protocol that
provides pseudonymity. If they do so, it would be unaccept-
able if our protocol deanonymizes users to adversaries on the
network. We do, however, use anonymity-like techniques to
achieve a subset of our deniability goals.

3. THREAT MODEL

3.1 Players
We will first introduce the different players and their re-

lations with each other. The set of users, denoted by U , is a
collection of entities that are willing to participate in multi-
party meetings. Honest parties, denoted by Â, B̂, Ĉ, . . . fol-
low the specifications faithfully; these parties are referred to
as Alice, Bob, Charlie, Dishonest parties deviate from
the prescribed protocol. Each party Â has an associated
long-lived static public-private key pair (SÂ,sÂ). We assume
that the associated public key for each party is known to all
other parties. (These associations can be communicated via
an out-of-band mechanism or through authentication proto-
cols as in [1].) A subset P of users can come together and
form a chatroom C; each member of P is called a participant
of C. While honest users follow the protocol specifications,
they may observe behavior that is not protocol compliant
due to either network failures, intentional malicious behav-
ior by other parties, or both.

In addition to users that take part in the conversation we
have three types of adversaries: (i) a security adversary, de-
noted by O; (ii) a consensus adversary, T ; and (iii) a privacy
adversary, M. The last player in the system, the judge J ,
does not interact with users but only with adversaries, in
particular withM. We will see his purpose when discussing
the adversaries’ goals.

5If the plaintext is recovered, the writing style or statements
made may reveal the author’s identity.

3.2 Goals
Honest users wish to have on-line chats that emulate face-

to-face meetings. It is the presence of the adversaries that
necessitates cryptographic measures to ensure confidential-
ity and privacy.

3.2.1 Security adversary
The goal of the security adversary is to read messages

that he is not entitled to. Let TC1 =
n

TX̂
C1 | X̂ ∈ P

o
be a

collection of transcripts resulting from a chat C1 with set of
chat participants P, such that no user in P revealed private6

information to, or collaborated with, the security adversary
O prior to the completion of C1. Suppose also that for each

honest participant Â, who owns TÂ
C1 ∈ TC1

7, and for each

honest participant B̂, who owns TB̂
C1 ∈ TC1 , Â and B̂ have

consistent view of the messages and participants. We say
that O is successful if O can read at least one message in

some TÂ
C1 without obtaining the message from a user B̂ who

owns TB̂
C1 .

A few remarks on O’s goals are in order. The security
adversary can control communication channels and observe
the actions of any number of users in P, learn messages that
they broadcast in other chatrooms, and start chatroom ses-
sions with them via proxy users. All these actions can take
place before, during or after C1. However, O is allowed nei-
ther to ask for static private information of any user in P
before the completion of C1 nor to take part in C1 via a proxy
user. The adversary may ask an honest user to send mes-
sages to C1, but should still be unable to decide if or when
his request is honored. Essentially, O aims to impersonate
an honest user during key agreement or to read messages in
a chatroom that consists only of honest users. O’s capabili-
ties are similar to the standard notion of indistinguishability
under chosen-plaintext attack for encryption schemes [2].

3.2.2 Consensus adversary
For details on communication in asynchronous networks

and how users can keep transcripts we refer the reader to
Reardon et. al. [18]. We first explain the meaning of con-
sensus, which relates to what Alice thinks about her and
Bob’s view of past messages. We say that Â reaches con-

sensus on TÂ
C1 with B̂ if Â believes that B̂ admits having

transcript TB̂
C2

8 such that:

1. C1 and C2 have the same set of participants;

2. C1 and C2 are the same chatroom instance;

3. TB̂
C2 has the same set of messages as TÂ

C1 ;

4. TB̂
C2 and TÂ

C1 agree on each message’s origin.

At the end of the meeting (or at predefined intermediate
stages) honest users attempt to reach consensus with each
other about the current transcript. Our consensus defini-
tion allows the possibility that Alice reaches a consensus
with Bob but Bob does not reach consensus with Alice: for
example if either Bob or Alice goes offline due to network

6Either static private keys or C1-related information.
7That is, user Â did take part in C1, and in particular Â ∈ P.
8By admitting this transcript B̂ admits taking part in C2.

failure before protocol completion. We also allow the appli-
cation to interpret “same set of messages” appropriately for
its setting. For instance, the importance of message delivery
order may vary by application.

The goal of the consensus adversary T is to get an honest
user Alice to reach consensus with another honest user Bob
on a transcript TÂ

C , while at least one consensus condition
is violated; that is, T wins if (honest) Alice believes that
(honest) Bob has a transcript matching hers (in the above
sense), but in fact Bob does not have such a transcript.
Note that while Alice and Bob are honest users there is no
restriction on the remaining chat members — they may even
be T -controlled, which is an improvement over KleeQ [18]
where all parties are assumed honest. Resilience against T
implies that users cannot be forced to have different views
of exchanged messages and no messages can be injected on
behalf of honest users without being detected.

Our consensus definition captures both the standard no-
tions of entity and origin authentication and the adversary’s
abilities to make conflicting statements to different partic-
ipants in the same chat session (as described in §2.5.1) as
well as drop, duplicate, reorder, and replay messages from
other chat sessions.

3.2.3 Privacy adversary
The goal of the privacy adversary M is to create a tran-

script TÂ
C1 to convince the judge J that Â took part in C1

and/or read and/or authored messages in TÂ
C1 . The only

restriction is that J is not directly involved in C1. This is
perhaps the hardest adversary to guard against as M has
few restrictions: M can interact in advance with J before
C1 is established and, by taking part in C1, can obtain con-
sensus with respect to Â. Furthermore, the judge can force
Â as well as all other participants to reveal their long-term
secrets. If under such a powerful adversary and judge combi-

nation, Alice can still plausibly deny TÂ
C1 , then many of her

privacy concerns can be assuaged. Our privacy requirement
is stronger than the settings presented in [11, 12] because J
must not be able to distinguish between Alice’s transcripts
and forgeries even if J gets Alice’s long-term secrets.

3.3 Local views
We complete the section by saying that from an honest

user’s perspective it is unclear a priori whether an honestly
behaving user has no malicious intent. Conversely, if a user
observes deviation from the protocol the user cannot always
distinguish a true malicious player from network instability.
(Certain deviations, such as a participant making conflicting
statements, can be identified, however.)

4. SOLUTION DESIGN
The mpOTR protocol follows a straightforward construc-

tion. To ensure confidentiality among the participants P1 of
a chatroom C1 the participants derive a shared encryption
key gk1. Messages sent to the chatroom are encrypted un-
der gk1 to ensure that only members of P1 can read them.
To provide message authentication, each participant Â ∈ P1

generates an ephemeral signature keypair (EÂ,1, eÂ,1) to be

used only in the current session. Each message sent by Â will
be signed under Â’s ephemeral signing key for the current
session eÂ,1. Participants exchange ephemeral public keys

for the current session EX̂,1 (X̂ ∈ P1) amongst themselves

Algorithm 1: Initiate(Pi) — initiate a chatroom Ci

among the participants Pi in the context of party X̂.
On successful completion, all participants hold a shared
encryption key, ephemeral public signature keys for all
other participants, and have authenticated all other par-
ticipants and protocol parameters.

Input: chat participants Pi

Output: an encryption key gki, session id sidi,
ephemeral public signature keys of all other
participants {EŶ ,i | Ŷ ∈ Pi}

// Initialize variables

sidi ← ⊥, Sent← ∅, Received← ∅;
consensusŶ ← false for all Ŷ ∈ Pi;

sidi ← SessionID(Pi);

// Exchange ephemeral signature keys

(result, R)
$←DSKE(sidi,Pi);

if result = accept then

foreach (E, Ŷ) ∈ R do EŶ ,i ← E;

else
abort session initiation;

// Agree on shared encryption key

gki
$←GKA(Pi, R);

if gki = ⊥ then abort session initiation;
Attest();

in a deniable fashion. At the end of the session, each partic-
ipant publishes their ephemeral private key eX̂,1 (X̂ ∈ P1)
for the current session to allow third parties to modify and
extend the chatroom transcript.

The mpOTR protocol lifecycle consists of three phases:
setup, communication, and shutdown. In the setup phase
all chatroom participants negotiate any protocol parame-
ters, derive a shared key, generate and exchange ephemeral
signing keys, and explicitly authenticate all protocol param-
eters including the set of chatroom members and the bind-
ing between participants and their ephemeral signature keys.
During the communication phase, participants can send con-
fidential, authenticated, deniable messages to the chatroom.
To end a chatroom session, the protocol enters the shutdown
phase. In the shutdown phase, each participant determines
if he has reached consensus with each other participant, after
which participants publish their ephemeral private keys.

4.1 Network communication
Our constructions assume the existence of the following

network primitives, typically provided by application layer
protocols, such as IM or IRC. To free our constructions from
undue dependence on the underlying network layer, we limit
ourselves to the following primitives:

• Broadcast(M) — sends message M over the broad-
cast channel where it can be Receive()’ed by all other
participants. In the absence of a broadcast medium,
like an IRC channel, Broadcast() can be simulated by
sending M directly to each other participant in P.

• Send(Â,M) — sends message M addressed explicitly

to Â. The network may send M to Â directly (point-
to-point) or via broadcast (during broadcast, all the

honest participants other than Â ignore M).

Algorithm 2: SessionID(Pi) — invoked in the con-

text of party X̂, the algorithm returns a unique (with
high probability) chatroom identifier for the set Pi upon
successful completion.

Input: chat participants Pi

Output: session id sidi

xX̂

$←{0, 1}k;
Broadcast(xX̂);

Outstanding ← Pi \ {X̂};
while Outstanding 6= ∅ do

(Ŷ , x)← Receive();

if Ŷ ∈ Outstanding then
xŶ ← x;

Outstanding ← Outstanding \ {Ŷ };

return H(Pi, xŶ1
, xŶ2

, . . .) for all Ŷj ∈ Pi ordered
lexically;

• Receive() → (Â,M) — returns any waiting message
M received by the party that invokes Receive() along

with M ’s alleged author Â.

• Receive(Â)→ M — waits until a message is received

from Â and returns that message (M).

To simplify our protocols, we make the following assump-
tions. Broadcast() and Send() are non-blocking. If message

M from party Â arrives at B̂ before B̂ executes a Receive()

call, M is buffered at B̂ and will be returned upon some sub-
sequent invocation of Receive() by B̂. Receive() calls block
until a message is available. If the current instance of some
party Â has assigned a value to its session id (sidi) variable,
Receive() will only return messages M that were sent from

an instance of some party B̂ that has set its session id to
the same value (i.e. Broadcast(), Send(), and Receive()
multiplex on sidi).

Recall that, with all network access, the adversary has
control over message delivery and may modify or deliver
messages at will. Thus, when Receive() invoked by B̂ re-

turns (Â,M), Â may have invoked either Broadcast(M) or

Send(B̂,M), or the adversary may have sent M under the

identity of Â.
In the following discussion, we abuse notation in that a

single value M may be replaced by a tuple (x1, x2, . . .). This
indicates that the values x1, x2, . . . have been encoded into
a single message using an unambiguous encoding scheme.
Upon receiving such a message, if parsing fails, the protocol
assigns the distinguished value ⊥ to each of x1, x2,

4.2 Setup phase
The setup phase is responsible for deriving the shared en-

cryption key gki for the chatroom Ci, performing entity au-
thentication, facilitating exchange of ephemeral signing keys
EX̂,i (X̂ ∈ Pi), and ensuring forward secrecy and deniabil-
ity. In the following, we assume that the participants have
negotiated the participant set Pi for the chatroom instance
Ci via an unspecified, unauthenticated means. Each par-
ticipant in the protocol executes the Initiate(Pi) algorithm
with their view of Pi. The Initiate() procedure will only
succeed if every other party in Pi completes its portion of
the protocol correctly and has the same view of Pi.

First, the participants calculate a globally unique session
id sidi for the current session. Each participant X̂ chooses
a random value xX̂ of suitable length k and broadcasts it
to the other participants. Each participant calculates sidi

by hashing the participant set Pi with the random contribu-
tions of all other participants. Under the assumption that
H(·) is a collision-resistant hash function, sidi is globally
unique with high probability as long as at least one partic-
ipant behaves honestly. If the adversary has manipulated
the random contributions (x), it will be detected during the
Attest() algorithm executed at the end of Initiate() when
sidi and any other unauthenticated parameters paramsi are
authenticated.
X̂ then enters into a deniable signature key exchange pro-

tocol with the other participants of Pi (DSKE(sidi,Pi)) to
generate an ephemeral signature key pair (EX̂,i, eX̂,i) and
to exchange ephemeral public keys with the other parties in
Pi. X̂ will use eX̂,i to sign messages sent to the chatroom

Ci. X̂ generates a new signing key pair in each session so
that there is no transferable proof that he has signed any
messages in the chat transcript. However, the other partici-
pants must know that EX̂,i will be X̂’s public signature key
for this session.

Next, Initiate() invokes a group key agreement protocol
that uses the set of participants Pi and their ephemeral sig-
nature keys to derive a fresh encryption key gki shared by
all members of Pi. If any stage of the group key agreement
fails, GKA() returns ⊥ and Initiate() aborts.

Finally, all participants execute the Attest() algorithm
to ensure that they agree on all lower-level protocol pa-
rameters that they may have negotiated before invoking
Initiate(). Each participant takes a hash over all of these
values and the session identifier, and uses the AuthSend()
and AuthReceive() procedures (see §4.3) to transmit the
hash value to all the other participants in a confidential, au-
thenticated manner. Each participant then ensures that the
value sent by all other participants matches their own. Upon
successfully completing Attest(), the participants have fully
initialized the chat session and can enter the communication
phase.

When users wish to join or leave a chatroom, the proto-
col shuts down the current session and then calls Initiate()
with the new set of participants to initialize a new chat ses-
sion. We handle joins and leaves in this manner because we
currently determine transcript consensus during the shut-
down phase and must derive a new encryption key before
a membership change can take place. Client software can
shut down and initialize a new session behind the scenes so
that users need only decide whether or not they accept the
proposed membership change.

4.2.1 Deniable Signature Key Exchange (DSKE)
In our construction, we use a sub-protocol that we call

Deniable Signature Key Exchange. Deniable Signature Key
Exchange allows the participants in a session to exchange
ephemeral signature keys with each other in a deniable fash-
ion. A participant will use his ephemeral signature key to
sign messages during one session. Because it is ephemeral
(used only in one session), the private key can be published
at the end of the session to permit transcript modification.
Because the key exchange protocol is deniable, there is no
transferable proof that any party has committed to use any
given key.

Algorithm 3: Attest() — authenticate (previously)
unauthenticated protocol parameters for the current ses-
sion in the context of party X̂.

Input: session id sidi, chat participant set Pi,
negotiated protocol parameters paramsi

Output: aborts protocol initiation on failure
M ← H(sidi, paramsi);
AuthSend(M);

Outstanding ← Pi \ {X̂};
while Outstanding 6= ∅ do

(Ŷ ,MY)← AuthReceive();
if MY 6= M then

abort the session;
else

Outstanding ← Outstanding \ {Ŷ };

Deniable Signature Key Exchange is an n-party interac-
tive protocol operating over common inputs: sid — a fresh
session identifier, and P — the set of participants for the ses-
sion identified by sid. When the protocol concludes, each
participant outputs a termination condition (either accept
or reject) and a set R relating the members of P to public

signature keys (e.g. R = {(EÂ, Â), (EB̂ , B̂), . . .}).

Two-party signature key exchange.
The goal of two party signature exchange (Algorithm 4)

is to allow Alice and Bob to exchange signing key pairs
(EÂ, eÂ) and (EB̂ , eB̂), respectively, such that: (i) Alice is
assured that Bob knows eB̂ corresponding to EB̂ ; (ii) Alice is
assured that Bob, if honest, will not associate E 6= EÂ with
Alice; and (iii) Alice is assured that after completing the ex-
change Bob cannot prove to a third party Charlie (without
Alice’s consent) that Alice has associated herself with EÂ

and knows eÂ. The same conditions must hold for Bob with
respect to Alice.

Algorithm 4: AuthUser(sid, B̂, EÂ, eÂ) — obtain and

associate B̂ with a signing key pair, and send B̂ one’s
own signing key EÂ.

Input: session id sid, peer identity B̂, signature pair
(EÂ, eÂ)

Output: associate B̂ with EB̂ or ⊥
k, km ← denAKE(Â, B̂);

Send(B̂, SymMacEnckm
k (EÂ, sid, Â, B̂));

(EB̂ , sid
′, B̂′, Â′)← SymDeckm

k (Receive(B̂));

Send(B̂, SymEnckm
k (Signe

Â
(EB̂ , sid, Â, B̂));

m← SymDeckm
k (Receive(B̂));

if (sid′ = sid) ∧ (Â′ = Â) ∧ (B̂′ = B̂)

∧V erify(m,EB̂ , (EÂ, sid
′, B̂, Â)) == 1 then

return B̂, EB̂ ;
else

return ⊥;

The signature exchange proceeds as follows: first Alice
and Bob run a deniable two-party key agreement protocol
denAKE(Â, B̂) to derive a shared secret. Using symmetric
key techniques they exchange signature keys that they in-

tend to use in the subsequent chatroom. Finally, both users
sign the ephemeral public key of their peer along with both
Alice’s and Bob’s identities under their ephemeral keys for
the current session.

Assume that denAKE() is a secure, deniable authenti-

cated key agreement protocol. Let SymMacEnckm
k () be an

algorithm that encrypts and authenticates messages with the
symmetric keys k and km, and let Sign() be an existentially
unforgeable signature scheme. The protocol denAKE() pro-
vides keying material only to Bob and Alice. Hence, they
are assured about each other’s identity. Since Bob signs
Alice’s ephemeral public signature key she is assured that
the signature that Bob generated is not a replay from other
sessions and that Bob knows the corresponding ephemeral
private key. Bob is assured that EÂ is connected with Alice
because he did not generate EÂ and his peer has to know
k and km to complete the protocol. Since denAKE() is
secure, the only party other than Bob that could have com-
puted k and km is Alice. Likewise, Alice is assured that an
honest Bob will not associate E 6= EÂ with her because Bob
will only associate an ephemeral key with Alice if Bob re-
ceived it through a secure channel that only Bob and Alice
share. The only proof that Bob has about communicating
with Alice is the denAKE() transcript. Since denAKE() is
deniable Alice can argue that any transcript between her-
self and Bob was created without her contribution; in other
words, Bob’s view cannot associate Alice to EÂ unless Alice
admits the association. Thus Algorithm 4 achieves the three
conditions that we described.

We conclude by saying that that EÂ and EB̂ are “pseudo-
nyms” that Alice and Bob exchange. As long as the cor-
responding private keys are not leaked each one of them is
assured about the identity behind the pseudonym and mes-
sages signed with the keys, but cannot prove to a third party
the relation between the pseudonym and a real entity. Fur-
thermore, any party Mallory can create a fake pseudonym
for Alice or Bob.

Multi-party signature key exchange.
We extend the two-party algorithm to the multi-party set-

ting. In particular, given a set of participants P, every pair
of users in P runs Algorithm 4. For a given identifier sid,
Alice uses the same key pair (EÂ, eÂ).

The next stage is for participants to assure each other
of the consistency of the association table that they build.
Let (EÂ, Â), . . . , (EX̂ , X̂), be the association table built by
Alice, lexicographically ordered on the signing keys. Each
user computes a hash of that table, signs the hash with her
ephemeral signing key and sends it to the rest of the par-
ticipants9. As a result each participant is assured that the
remaining members have the same view about the associa-
tion table. Note that the exchange does not reveal anything
about the table. The set of participants can collaborate to
introduce “non-existent” users into the chatroom. In other
words, if agreed, a set of users can create a transcript that
allegedly involves an absent user Alice. Such a transcript
can be indistinguishable from a transcript where Alice did
take part.

9This can be incorporated into Attest()

Deniable AKE.
By a “secure” key agreement protocol we mean the stan-

dard indistinguishable from random key notion introduced
by Bellare and Rogaway [3]. However, we are concerned
with malicious insiders so protocols that meet models as in-
troduced in [17] are more suitable for our needs, since they
allow the adversary to adaptively introduce malicious par-
ties to the system.

In contrast to secure key exchange, “deniable” key ex-
change has not been as widely studied. On one hand there
is a formal definition, presented in [11, Definition 1], that
relies on the fact that a receiver’s view can be simulated.
The authors prove the deniability of SKEME [13] according
to their definition. However, there are some pitfalls related
to leaking static secrets and the deniability of SKEME. If
the judge J has access to the static secrets of the alleged
participants, J can distinguish between authentic and sim-
ulated transcripts. Therefore, SKEME does not meet our
privacy requirement (§3.2.3).

On the other hand, Diffie-Hellman variants like MQV [14]
provide plausible deniability as outlined in [7]. The shared
key is derived only from public values, so a peer can plau-
sibly argue that he did not take part in the key agreement.
Additionally, implicitly authenticated protocols that meet
the security definition of [17] appear to meet our privacy
notion. This allows any such protocol to be used in settings
where the participants may expose their long-lived secrets
without sacrificing deniability.

As suggested in [7], one can achieve improved deniability
via self-signed certificates that users authenticate. At the
extreme it is possible for users not to have any static secrets
but to authenticate each other via out-of-band means for
every session. While such a solution is possible, its usability
is questionable. We accept that users cannot convincingly
deny their static secrets in order to achieve a less compli-
cated protocol. The users can still deny taking part in any
fixed chatroom and the content of messages that they sent.

4.2.2 Group Key Agreement
Assuming that users successfully run the signature ex-

change protocol, they can proceed to establish group keys.
Given sid and an association table from sid users run a typ-
ical key group key agreement protocol to derive a shared se-
cret key gk to ensure that they have a means for confidential
communication. Note that when the group key agreement is
based on the session-specific signature keys, Alice can deny
knowing gk by arguing that she took no part in the protocol
— recall there is no proof of her relation with EÂ.

4.2.3 Properties
Alice can plausibly argue that she did not take part in

a chat because it is possible to create a protocol transcript
that includes users who did not actually take part in the
chat. This can happen if all participants collaborate to in-
troduce such non-existent users. In the limit, this allows
a single party to create a transcript involving any number
of other non-cooperating parties. With an appropriate deni-
able signature key exchange, the forging party need not even
be a member of P. The issue of modifying existing messages
in a transcript will be addressed in the shutdown phase.

4.3 Communication phase
During the communication phase, chat participants may

exchange confidential messages with the assurance of ori-
gin authentication — that they have received messages un-
changed from their purported authors. Given a chatroom in-
stance C1 with participant set P1, we use the group key gk1,
ephemeral public keys of the participants EX̂,1 (X̂ ∈ P1)
and session id sid1 for C1 in a standard Encrypt-then-Sign
construction to provide authenticated encryption [2] for mes-
sages sent to the chatroom. Algorithms AuthSend() and
AuthReceive() give our construction.

Algorithm 5: AuthSend(M) — broadcast message M

authenticated under party X̂’s ephemeral signing key to
chatroom Ci.

Input: message M , session id sidi, shared chat
encryption key gki, ephemeral private signing
key eX̂,i

Output: authenticated encryption of M is broadcast
to chat channel

Sent← Sent ∪ {(X̂,M)};
C ← Encryptgki(M), σ ← Signe

X̂,i
((sidi, C));

Broadcast((sidi, C, σ));

Algorithm 6: AuthReceive() — attempt to receive an
authenticated message from Ci, return the sender and
plaintext on success, sender and ⊥ on failure.

Input: session id sidi, shared chat encryption key gki,
ephemeral public signature keys of other
participants {EŶ ,i | Ŷ ∈ Pi}

Output: sender identity Ŷ and plaintext message M ,
or ⊥ on failure

(Ŷ , (sid, C, σ))← Receive();
if sid 6= sidi ∨ V erify((sid,C), σ, EŶ ,i) 6= 1 then

return (Ŷ ,⊥); // Bad signature or session id

M ← Decryptgki(C) ; // returns ⊥ on failure

if M 6= ⊥ then

Received← Received ∪ {(Ŷ ,M)};
return (Ŷ ,M);

When Â sends a message to the chatroom, she first en-
crypts the message under the shared key of the chatroom gk1

to ensure that only legitimate chat participants (P1) will be

able to read it. Then, Â signs the session id sid1 and cipher-
text using his ephemeral signing key eÂ,1 and broadcasts the
session id, ciphertext, and signature to the network allowing
all recipients to verify that Â has sent the ciphertext to C1
and that it has been received unmodified.

We assume that Encrypt() and Decrypt() constitute a se-
cure encryption scheme indistinguishable under chosen plain-
text attack (IND-CPA) [2], GKA() is a secure group key
agreement scheme [5], DSKE() is secure as described in
§4.2.1, Sign() and V erify() constitute an existentially un-
forgeable signature scheme, and session identifiers are glob-
ally unique. Under these assumptions, we can transform any
confidentiality adversary O (§3.2.1) into a successful adver-
sary against the encryption scheme, the group key agreement
that derives the encryption key gki, or the deniable signature

key exchange scheme that distributes the ephemeral signa-
ture keys that are used to authenticate messages sent during
the group key agreement. Therefore, under the assumption
that the above protocols are secure, our full scheme is secure
against any confidentiality adversary O.

Likewise, the security ofDSKE() and the signature scheme
imply that the adversary cannot forge messages that are ac-
ceptable by AuthReceive(). Including the globally unique
session id in the message to be signed prevents a message
from one session from being replayed in another session. We
can also achieve this by deriving a chatroom-specific MAC
key from gki, which verifies that messages are designated
for sidi. While a consensus adversary T is unable to suc-
cessfully forge messages, she can attempt to break consensus
by dropping or duplicating messages or by sending different
correctly authenticated messages from a corrupted partici-
pant to disjoint subsets of honest participants. E.g. T uses
corrupted participant Ĉ to send M1 to X̂ and M2 to Ŷ where
M1 6= M2. We address these last three threats during the
shutdown phase.

4.4 Shutdown phase
When the application determines that there are no out-

standing in-flight messages between participants and that
the chat session should be ended, it invokes the Shutdown()
algorithm. Shutdown() is responsible for determining whe-
ther all participants have reached a consensus and for pub-
lishing the ephemeral signature key generated for the cur-
rent session. All in-flight messages must have been delivered
before invoking shutdown for two reasons: (i) in-flight mes-
sages will cause unnecessary failure to reach consensus; and
(ii) publication of the ephemeral signature key would allow
the adversary to modify any in-flight messages.

To establish consensus, the local party (X̂) takes a digest

over all the messages authored by X̂ during the chat session
and sends it along with the distinguished message “shut-
down” to all the other parties. This message allows each
other participant to verify that his transcript of received
messages from X̂ is identical to X̂’s view. To ensure that
out-of-order message delivery does not affect this digest, the
messages are taken in lexical order. Note, however, that
should messages include a suitable order fingerprint, then
lexical order can coincide with delivery or creation order,
hence our ordering is unrestrictive. For example, if each mes-
sage starts with an author identifier and a sequence number,
lexical order will group messages by author in the order that
they were created.
Shutdown() collects the digests published by all the other

participants. It then calculates the digests of X̂’s transcripts
of the messages received from each other party, combines
these digests into a single digest, publishes the combined
digest, and collects the combined digests from all the other
parties. At this point, X̂ determines if it has reached consen-
sus with each of the other parties on the session transcript.

Since at the setup phase parties confirmed their views of
chat participants and sid of the chat, all transcripts already
agree on the set of participants and the chat instance. As
argued in §4.3, the only remaining way for an adversary to
break consensus is to force different messages in the tran-
script. The consensus adversary does not (yet) have the sig-
nature keys hence he is still not able to inject new messages
or impersonate honest users; his only freedom is the hash
function that we assume collision and preimage resistant.

Algorithm 7: Shutdown() — called in the context of

party X̂ when the application determines that the session
should be shut down. Determines if consensus has been
reached with other participants and publishes ephemeral
signing key.

Input: all sent messages Sent, all received messages
Received, participant set Pi, session id sidi,
ephemeral signing key eX̂,i

Output: consensusŶ values indicating if consensus has

been reached for each party Ŷ , publishes
private ephemeral signing key for current
session eX̂,i

// Publish digest of sent messages

Let ((X̂,M X̂
1), (X̂,M X̂

2), . . .) = Sent in lexical order;

hX̂ ← H(M X̂
1 ,M

X̂
2 , . . .);

AuthSend((“shutdown”, hX̂));

// Collect digests of others’ transcripts

// and calculate digest of our view

Outstanding ← Pi \ {X̂};
while Outstanding 6= ∅ do

(Ŷ , (“shutdown”, h′
Ŷ

))← AuthReceive();

Let (M Ŷ
1 ,M

Ŷ
2 , . . .) = {M | (Ŷ ,M) ∈ Received} in

lexical order;

hŶ ← H(M Ŷ
1 ,M

Ŷ
2 , . . .);

Outstanding ← Outstanding \ {Ŷ };

// Publish digest of full chat

Let (Ŷ1, Ŷ2, . . .) = Pi in lexical order;
h← H(hŶ1

, hŶ2
, . . .);

AuthSend((“digest”, h));

// Determine consensus

Outstanding ← Pi \ {X̂};
while Outstanding 6= ∅ do

(Ŷ , (M,h′))← AuthReceive();

if M = “digest”∧ Ŷ ∈ Outstanding then
consensusŶ ← h = h′;

Outstanding ← Outstanding \ {Ŷ };

// Verify that nobody’s listening

AuthSend(“end′′);

Outstanding ← Pi \ {X̂};
while Outstanding 6= ∅ do

(Ŷ ,M)← AuthReceive();
if M 6= “end” then

return;
else

Outstanding ← Outstanding \ {Ŷ };

// Publish ephemeral signing key

Broadcast((sidi, X̂, eX̂,i));

Thus chat participants obtain assurances about consistency
— they reach pairwise consensus in the sense of §3.2.2.

The consensus approach adopted above is crude, as it does
not attempt to remedy any consensus errors, and it only
determines consensus at the very end of the chat session.
We adopt this simple approach to allow the network layer
to freely choose consensus-ensuring algorithms. The net-
work could provide totally ordered multicast or KleeQ-like
algorithms optimized for the broadcast medium. Whatever
approach is chosen, our protocol can detect any violations
of reliable delivery at the mpOTR level. Furthermore, the
signatures used to authenticate messages are transferable
within the chatroom since all members have the correct asso-
ciation between the chatroom-specific signature keys and the
entities behind the keys. Therefore the protocol can identify
malicious users, since an honest party Alice has transferable
proofs to convince any other honest party about the origin of
the messages that she received. Thus she can prove that she
did not modify or inject messages on behalf of other users.
Likewise, she can update her transcript with messages that
she failed to receive. Ultimately, honest users can agree on
a transcript that is the union of all the messages that have
reached at least one honest user. Although we have chosen
the simple approach above for its clarity, approaches that
ensure consensus incrementally throughout the chat session
are possible and useful.

After exchanging all the values, Shutdown() sends the dis-

tinguished message “end” indicating X̂ will no longer send
any authenticated messages. Once X̂ has received the “end”
message from each other participant, X̂ knows that all par-
ticipants have determined their consensus values and will
no longer accept messages from X̂. This allows X̂ to pub-
lish his ephemeral signing key to permit modifying the chat
transcript.

Publishing the ephemeral signing key is a delicate issue.
If the key is published too soon, the adversary could use the
ephemeral signing key to impersonate the current party to
others. Therefore, the protocol only publishes the ephemeral
signing key at the end of Shutdown() if it can verify that all
other parties have agreed that they have determined their
consensus values and will only publish their keys or end the
session. The adversary can trivially prevent any party X̂
from publishing its signing key by preventing the delivery
of even one of the “end” messages. However, this is not a
problem. The protocol is deniable even without publishing
the ephemeral signing keys. Therefore, we gladly trade the
deniability benefits gained by allowing malleability for en-
suring that the adversary will not be able to impersonate
X̂. However, if parties do publish their ephemeral signing
keys then the existing transcripts can be tweaked. This a
posteriori publication of signing keys allows for a user Al-
ice who accepts a relation between her chatroom signing
key and herself to argue that the messages in the transcript
are bogus. Indeed the adversary could inject and/or delete
messages on behalf of Alice’s ephemeral signing key, since
all secret information has been made public.

5. CONCLUSION
Our proposed framework for multi-party Off-the-Record

communication does not depend on a central server; instead
we developed a model that mimics a typical private meeting
where each user authenticates the other participants for him-
self. We identified three main goals for mpOTR: confiden-

tiality, consensus and repudiation. We achieve confidential-
ity via standard cryptographic measures. Consensus is based
on unforgeable signatures. Repudiation is based on a user’s
ability to disassociate from the signing key pair. The crucial
step in our solution is the distribution of chatroom-specific
signature keys, which become the authentication mechanism
during the chat. The deniability is a consequence of the for-
ward secrecy and deniability of the key agreement protocol
that is used to establish authentic, confidential, deniable
channels between pairs of parties.

We are currently implementing and improving the effi-
ciency of mpOTR. Since the setup phase is crucial for con-
sensus and deniability we opted for a relatively slow solution
that requires pairwise interaction. It is natural to look for a
more efficient protocol for authentic, deniable, confidential
exchange of signing keys. We also believe that a complete
formalization and verification of our model will improve our
understanding and will help us select suitable primitives
and analyze mpOTR’s interaction with anonymity-providing
protocols and networks.

Acknowledgments
We would like to thank Matt Franklin, Matt Bishop, Zhen-
dong Su, and Phillip Rogaway for their feedback during the
early stages of this research. We would also like to thank
the anonymous reviewers for their helpful comments. This
research is based upon work supported by the National Sci-
ence Foundation under Grant No 0831547 (Van Gundy and
Chen), MITACS (Goldberg) and NSERC (Goldberg).

6. REFERENCES
[1] C. Alexander and I. Goldberg. Improved User

Authentication in Off-The-Record Messaging. In
P. Ning and T. Yu, editors, WPES’07: Proceedings of
the 2007 ACM workshop on Privacy in electronic
society, pages 41–47, New York, NY, USA, 2007.
ACM.

[2] M. Bellare and C. Namprempre. Authenticated
Encryption: Relations among notions and analysis of
the generic composition paradigm. In T. Okamoto,
editor, Advances in Cryptology – ASIACRYPT 2000,
volume 1976 of LNCS, New York, NY, USA, Dec.
2000. Springer-Verlag.

[3] M. Bellare and P. Rogaway. Entity Authentication
and Key Distribution. In D. R. Stinson, editor,
Advances in Cryptology – CRYPTO’93, volume 773 of
LNCS, pages 232–249, Santa Barbara, CA, USA,
1993. Springer Verlag. Full version available at
http://www.cs.ucdavis.edu/~rogaway/papers/

eakd-abstract.html.

[4] J. Bian, R. Seker, and U. Topaloglu. Off-the-Record
Instant Messaging for Group Conversation. In IRI ’07:
Proceedings of Information Reuse and Integration,
pages 79–84. IEEE Computer Society, 2007.

[5] J.-M. Bohli, M. I. G. Vasco, and R. Steinwandt.
Secure Group Key Establishment Revisited.
Cryptology ePrint Archive, Report 2005/395, 2005.
http://eprint.iacr.org/2005/395.

[6] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record
communication, or, why not to use PGP. In V. Atluri,
P. Syverson, and S. D. C. di Vimercati, editors, WPES
’04: Proceedings of the 2004 ACM workshop on

Privacy in the electronic society, pages 77–84, New
York, NY, USA, 2004. ACM.

[7] C. Boyd, W. Mao, and K. G. Paterson. Key
Agreement Using Statically Keyed Authenticators. In
B. Christianson, B. Crispo, J. A. Malcolm, and
M. Roe, editors, Security Protocols, 11th International
Workshop, Revised Selected Papers, volume 3364 of
LNCS, pages 255–271, Berlin, Germany, 2005.
Springer Verlag.

[8] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky.
Deniable Encryption. In B. S. Kaliski, Jr., editor,
Advances in Cryptology – CRYPTO’97, volume 1294
of LNCS, pages 90–104, Santa Barbara, CA, USA,
1997. Springer Verlag.

[9] S. M. Cherry. IM means business. IEEE Spectrum,
38:28–32, November 2002.

[10] M. Di Raimondo, R. Gennaro, and H. Krawczyk.
Secure Off-the-Record Messaging. In V. Atluri,
S. D. C. di Vimercati, and R. Dingledine, editors,
WPES’05: Proceedings of the 2005 ACM workshop on
Privacy in electronic society, pages 81–89, New York,
NY, USA, 2005. ACM.

[11] M. Di Raimondo, R. Gennaro, and H. Krawczyk.
Deniable Authentication and Key Exchange. In R. N.
Wright, S. De Capitani di Vimercati, and
V. Shmatikov, editors, CCS 2006: Proceedings of the
13th ACM Conference on Computer and
Communications security, pages 400–409, New York,
NY, USA, 2006. ACM.

[12] C. Dwork, M. Naor, and A. Sahai. Concurrent
Zero-Knowledge. Journal of the ACM, 51(6):851–898,
2004. http://www.wisdom.weizmann.ac.il/%7Enaor/
PAPERS/time.ps.

[13] H. Krawczyk. SKEME: A Versatile Secure Key
Exchange Mechanism for Internet. In SNDSS ’96:
Proceedings of the 1996 Symposium on Network and
Distributed System Security, pages 114–127, 1996.

[14] L. Law, A. Menezes, M. Qu, J. Solinas, and
S. Vanstone. An Efficient Protocol for Authenticated
Key Agreement. Designs, Codes and Cryptography,
28(2):119–134, 2003.

[15] M. Mannan. Secure Public Instant Messaging.
Master’s thesis, Carleton University, Ottawa, Canada,
August 2005.

[16] M. Mannan and P. C. van Oorschot. A Protocol for
Secure Public Instant Messaging. In G. Di Crescenzo
and A. Rubin, editors, Financial Cryptography and
Data Security – FC 2006, volume 4107 of LNCS,
pages 20–35, Anguilla, British West Indies, 2006.
Springer Verlag. Full version available at
http://www.scs.carleton.ca/research/tech_

reports/2006/download/TR-06-01.pdf.

[17] A. Menezes and B. Ustaoglu. Comparing the pre- and
post-specified peer models for key agreement. In
Y. Mu, W. Susilo, and J. Seberry, editors, Information
Security and Privacy – ACISP 2008, volume 5107 of
LNCS, pages 53–68. Springer, 2008.

[18] J. Reardon, A. Kligman, B. Agala, and I. Goldberg.
KleeQ: Asynchronous Key Management for Dynamic
Ad-Hoc Networks. Technical Report CACR 2007-03,
Center for Applied Cryptographic Research,
University of Waterloo, Waterloo, ON, Canada, 2007.

http://www.cs.ucdavis.edu/~rogaway/papers/eakd-abstract.html
http://www.cs.ucdavis.edu/~rogaway/papers/eakd-abstract.html
http://eprint.iacr.org/2005/395
http://www.wisdom.weizmann.ac.il/%7Enaor/PAPERS/time.ps
http://www.wisdom.weizmann.ac.il/%7Enaor/PAPERS/time.ps
http://www.scs.carleton.ca/research/tech_reports/2006/download/TR-06-01.pdf
http://www.scs.carleton.ca/research/tech_reports/2006/download/TR-06-01.pdf

	Motivation
	Related work
	Outline

	Private chatrooms
	Confidentiality
	Entity authentication
	Origin authentication
	Forward secrecy
	Deniability
	Repudiation
	Forgeability
	Malleability

	Anonymity and pseudonymity

	Threat model
	Players
	Goals
	Security adversary
	Consensus adversary
	Privacy adversary

	Local views

	Solution design
	Network communication
	Setup phase
	Deniable Signature Key Exchange (DSKE)
	Group Key Agreement
	Properties

	Communication phase
	Shutdown phase

	Conclusion
	References

